login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034912
One sixth of octo-factorial numbers.
7
1, 14, 308, 9240, 351120, 16151520, 872182080, 54075288960, 3785270227200, 295251077721600, 25391592684057600, 2386809712301414400, 243454590654744268800, 26780004972021869568000, 3160040586698580609024000, 398165113924021156737024000, 53354125265818835002761216000
OFFSET
1,2
FORMULA
6*a(n) = (8*n-2)(!^8) = Product_{j=1..n} (8*j - 2) = 2^n*3*A034176(n), where 3*A034176(n) = (4*n-1)(!^4) = Product_{j=1..n} (4*j - 1).
E.g.f.: (-1+(1-8*x)^(-3/4))/6.
G.f.: x/(1-14*x/(1-8*x/(1-22*x/(1-16*x/(1-30*x/(1-24*x/(1-38*x/(1-32*x/(1-...(continued fraction). - Philippe Deléham, Jan 07 2012
From G. C. Greubel, Oct 20 2022: (Start)
a(n) = (1/6) * 8^n * Pochhammer(n, 3/4).
a(n) = 2*(4*n - 1)*a(n-1). (End)
From Amiram Eldar, Dec 20 2022: (Start)
a(n) = A147626(n+1)/6.
Sum_{n>=1} 1/a(n) = 6*(e/8^2)^(1/8)*(Gamma(3/4) - Gamma(3/4, 1/8)). (End)
MAPLE
f:= proc(n) option remember; procname(n-1)*(8*n-2) end proc:
f(1):= 1:
map(f, [$1..20]); # Robert Israel, Mar 20 2018
MATHEMATICA
Table[8^n*Pochhammer[3/4, n]/6, {n, 40}] (* G. C. Greubel, Oct 20 2022 *)
PROG
(Magma) [n le 1 select 1 else (8*n-2)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 20 2022
(SageMath) [8^n*rising_factorial(3/4, n)/6 for n in range(1, 40)] # G. C. Greubel, Oct 20 2022
KEYWORD
easy,nonn
STATUS
approved