login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033712
theta3(z) * theta3(2*z) * theta3(3*z) * theta3(6*z).
12
1, 2, 2, 6, 6, 4, 14, 8, 6, 26, 12, 16, 42, 12, 16, 44, 6, 20, 50, 16, 36, 56, 24, 16, 42, 30, 28, 78, 48, 36, 84, 40, 6, 80, 36, 48, 150, 44, 40, 100, 36, 36, 112, 48, 72, 148, 48, 48, 42, 50, 62, 124, 84, 52, 158, 64, 48, 144, 60, 64, 252, 60, 64, 200, 6, 88, 168, 64, 108
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102, eq. 9.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 3, p. 225.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Number of solutions to a^2 + 2*b^2 + 3*c^2 + 6*d^2 = n in integers.
Expansion of phi(q) * phi(q^2) * phi(q^3) * phi(q^6) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Apr 19 2015
Expansion of (eta(q^2) * eta(q^4) * eta(q^6) * eta(q^12))^3 / (eta(q) * eta(q^3) * eta(q^8) * eta(q^24))^2 in powers of q.
Euler transform of period 24 sequence [2, -1, 4, -4, 2, -2, 2, -2, 4, -1, 2, -8, 2, -1, 4, -2, 2, -2, 2, -4, 4, -1, 2, -4, ...]. - Michael Somos, May 30 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 24 (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Apr 19 2015
a(2*n) = A282544(n). a(4*n) = A125510(n).
EXAMPLE
G.f. = 1 + 2*q + 2*q^2 + 6*q^3 + 6*q^4 + 4*q^5 + 14*q^6 + 8*q^7 + 6*q^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2] EllipticTheta[ 3, 0, q^3] EllipticTheta[ 3, 0, q^6], {q, 0, n}]; (* Michael Somos, Apr 19 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = sum( k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); polcoeff( A * subst( A + x * O(x^(n\2)), x , x^2) * subst( A + x * O(x^(n\3)), x, x^3) * subst( A + x * O(x^(n\6)), x, x^6), n))}; /* Michael Somos, May 30 2005 */
(PARI) {a(n) = my(G); if( n<0, 0, G = [1, 0, 0, 0; 0, 2, 0, 0; 0, 0, 3, 0; 0, 0, 0, 6 ]; polcoeff( 1 + 2 * x * Ser( qfrep( G, n)), n))}; /* Michael Somos, Apr 19 2015 */
(Magma) A := Basis( ModularForms( Gamma0(24), 2), 69); A[1] + 2*A[2] + 2*A[3] + 6*A[4] + 6*A[5] + 4*A[6] + 14*A[7] + 6*A[8]; /* Michael Somos, Apr 19 2015 */
CROSSREFS
Sequence in context: A320190 A320189 A320188 * A033730 A033754 A171661
KEYWORD
nonn
STATUS
approved