login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125510
Theta series of 4-dimensional lattice QQF.4.g.
3
1, 6, 6, 42, 6, 36, 42, 48, 6, 150, 36, 72, 42, 84, 48, 252, 6, 108, 150, 120, 36, 336, 72, 144, 42, 186, 84, 474, 48, 180, 252, 192, 6, 504, 108, 288, 150, 228, 120, 588, 36, 252, 336, 264, 72, 900, 144, 288, 42, 342, 186, 756, 84, 324, 474, 432, 48, 840, 180, 360, 252, 372
OFFSET
0,2
COMMENTS
This sequence is obtainable, from eta products, by expanding the quotient of Eq. (135) over Eq. (105) in Broadhurst (arXiv:1604.03057). See PARI program below. - David Broadhurst, Apr 12 2016
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
David Broadhurst, Feynman integrals, L-series and Kloosterman moments, arXiv:1604.03057 [physics.gen-ph], 2016.
G. Nebe and N. J. A. Sloane, Home page for this lattice
FORMULA
Expansion of a(x) * a(x^2) in powers of x where a() is a cubic AGM theta function. - Michael Somos, Feb 10 2011
G.f.: 1 + 6 * (Sum_{k>0} F(x^k) + 3 * F(x^(3*k))) where F(x) = (x + x^3) / (1 - x^2)^2. - Michael Somos, Feb 10 2011
G.f.: 1 + 6 * (Sum_{k>0} k * F(x^k) + (3*k) * F(x^(3*k)))) where F(x) = x / (1 + x). - Michael Somos, Feb 10 2011
a(n) = 6*b(n) where b() is multiplicative with b(2^e) = 1, b(3^e) = 3^(e+1) - 2, b(p^e) = (p^(e+1) - 1) / (p-1) if p>3. - Michael Somos, Feb 17 2017
Expansion of (eta(q) * eta(q^2))^4 + 9 * (eta(q^3) * eta(q^6))^4) / (eta(q) * eta(q^2) * eta(q^3) * eta(q^6)) in powers of q. - Michael Somos, Feb 17 2017
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 6 (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Feb 17 2017
G.f. A(x) = (F(x) + 3*F(x^3)) / 4 where F() = g.f. of A004011. - Michael Somos, Feb 17 2017
a(n) = A282544(2*n). - Michael Somos, Feb 18 2017
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / 3. - Vaclav Kotesovec, Dec 29 2023
EXAMPLE
G.f. = 1 + 6*x + 6*x^2 + 42*x^3 + 6*x^4 + 36*x^5 + 42*x^6 + 48*x^7 + 6*x^8 + ...
G.f. = 1 + 6*q^2 + 6*q^4 + 42*q^6 + 6*q^8 + 36*q^10 + 42*q^12 + 48*q^14 + 6*q^16 + ...
MATHEMATICA
a[n_] := 6*(DivisorSum[n, Mod[#, 2]*# &] + If[Mod[n, 3] != 0, 0, 3 * DivisorSum[n/3, Mod[#, 2]*# &]]); a[0]=1; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Dec 02 2015, adapted from PARI *)
a[ n_] := If[ n < 1, Boole[n == 0], 6 Times @@ (Which[# < 3, 1, # == 3, 3^(#2 + 1) - 2, True, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger@n)]; (* Michael Somos, Feb 17 2017 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 6 * (sumdiv( n, d, (d%2) * d) + if( n%3, 0, 3 * sumdiv( n/3, d, (d%2) * d))))}; /* Michael Somos, Feb 10 2011 */
(PARI) {et(n)=eta(q^n+O(q^(nt+1))); }
{nt=5000; et16=et(1)*et(6); et23=et(2)*et(3);
Eq105=(et16*et23)^2;
Eq135=(et23^3/et16)^3+q*(et16^3/et23)^3;
ans=Vec(Eq135/Eq105);
for(n=0, nt, print(n" "ans[n+1])); } /* David Broadhurst, Apr 12 2016 */
(PARI) {a(n) = if( n<1, n==0, my(A, p, e); A = factor(n); 6 * prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 1, p==3, 3^(e+1) - 2, (p^(e+1) - 1) / (p - 1))))}; /* Michael Somos, Feb 17 2017 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 + 9*x*eta(x^9 + A)^3) * (eta(x^2 + A)^3 + 9*x^2*eta(x^18 + A)^3) / (eta(x^3 + A) * eta(x^6 + A)), n))}; /* Michael Somos, Feb 17 2017 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ((eta(x + A) * eta(x^2 + A))^4 + 9*x* (eta(x^3 + A) * eta(x^6 + A))^4) / (eta(x + A) * eta(x^2 + A) * eta(x^3 + A) * eta(x^6 + A)), n))}; /* Michael Somos, Feb 17 2017 */
(Magma) A := Basis( ModularForms( Gamma0(6), 2), 59); A[1] + 6*A[2] + 6*A[3]; /* Michael Somos, Feb 17 2017 */
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 31 2007
STATUS
approved