login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282544
Expansion of (phi(x)^4 + 3*phi(x^3)^4) / 4 in powers of x where phi() is a Ramanujan theta function.
3
1, 2, 6, 14, 6, 12, 42, 16, 6, 50, 36, 24, 42, 28, 48, 84, 6, 36, 150, 40, 36, 112, 72, 48, 42, 62, 84, 158, 48, 60, 252, 64, 6, 168, 108, 96, 150, 76, 120, 196, 36, 84, 336, 88, 72, 300, 144, 96, 42, 114, 186, 252, 84, 108, 474, 144, 48, 280, 180, 120, 252
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
a(n) is the number of solutions in integers to n = x^2 + y^2 + z^2 + w^2 where x + y + z = 3m is a multiple of 3. - Michael Somos, Jun 23 2018
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of a(x^2) * phi(x) * phi(x^3) in powers of x where a() is a cubic AGM theta function and phi() is a Ramanujan theta function.
Expansion of (chi(x) * chi(x^3))^3 * (psi(x)^4 + 3*x*psi(x^3)^4) in powers of x where psi(), chi() are Ramanujan theta functions.
a(n) = 2*b(n) where b() is multiplicative with a(0) = 1, b(2^e) = 3 if e>0, b(3^e) = 3^(e+1) - 2, b(p^e) = (p^(e+1) - 1 / (p - 1) if p>3.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 12 (t/i)^2 f(t) where q = exp(2 Pi i t).
G.f.: ((Sum_{k in Z} x^k^2)^4 + 3 * (Sum_{k in Z} x^(3*k^2))^4) / 4.
G.f.: 1 + 2 * Sum_{k>0} F(k, x) + 6 * Sum_{k>0} F(3*k, x) where F(k, x) = x^k / (1 + (-x)^k)^2.
G.f.: 1 + 2 * Sum_{k>0} F(k, x) + 2 * Sum_{k>0} F(3*k, x) where F(k, x) = k * x^k / (1 + (-x)^k).
a(2*n) = A125510(n). a(n) = A033712(2*n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/6 = 1.644934... (A013661). - Amiram Eldar, Dec 29 2023
EXAMPLE
G.f. = 1 + 2*x + 6*x^2 + 14*x^3 + 6*x^4 + 12*x^5 + 42*x^6 + 16*x^7 + 6*x^8 + ...
a(4) = 6 with solutions (x, y, z, w) = {(1, 1, 1, 1), (1, 1, 1, -1), (0, 0, 0, 2)} and their negatives. - Michael Somos, Jun 23 2018
MATHEMATICA
a[ n_] := If[ n < 1, Boole[n == 0], 2 DivisorSum[n, # {1, 1, 2, 0, 1, 2, 1, 0, 2, 1, 1, 0}[[Mod[#, 12, 1]]] &]];
a[ n_] := If[ n < 1, Boole[n == 0], 2 Times @@ (Which[# < 3, 2 + (-1)^#, # == 3, 3^(#2 + 1) - 2, True, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger@n)];
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, x]^4 + 3 * EllipticTheta[ 3, 0, x^3]^4) / 4, {x, 0, n}];
PROG
(PARI) {a(n) = if( n<1, n==0, 2 * sumdiv(n, d, d * [0, 1, 1, 2, 0, 1, 2, 1, 0, 2, 1, 1][d%12+1]))};
(PARI) {a(n) = if( n<1, n==0, my(A, p , e); A = factor(n); 2 * prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 3, p==3, 3^(e+1) - 2, (p^(e+1) - 1) / (p -1))))};
(PARI) {a(n) = if( n<0, 0, my(A); A = x * O(x^n); polcoeff( (sum(k=1, sqrtint(n), 2 * x^k^2, 1 + A)^4 + 3 * sum(k=1, sqrtint(n\3), 2 * x^(3*k^2), 1 + A)^4) / 4, n))};
(Magma) A := Basis( ModularForms( Gamma0(12), 2), 60); A[1] + 2*A[2] + 6*A[3] + 14*A[4] + 6*A[5];
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Feb 17 2017
STATUS
approved