The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A032189 Number of ways to partition n elements into pie slices each with an odd number of elements. 4
 1, 1, 2, 2, 3, 4, 5, 7, 10, 14, 19, 30, 41, 63, 94, 142, 211, 328, 493, 765, 1170, 1810, 2787, 4340, 6713, 10461, 16274, 25414, 39651, 62074, 97109, 152287, 238838, 375166, 589527, 927554, 1459961, 2300347, 3626242, 5721044, 9030451, 14264308, 22542397, 35646311, 56393862, 89264834, 141358275 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS a(n) is also the total number of cyclic compositions of n into odd parts assuming that two compositions are equivalent if one can be obtained from the other by a cyclic shift. For example, a(5)=3 because 5 has the following three cyclic compositions into odd parts: 5, 1+3+1, 1+1+1+1+1. - Petros Hadjicostas, Dec 27 2016 LINKS Table of n, a(n) for n=1..47. C. G. Bower, Transforms (2) P. Flajolet and M. Soria, The Cycle Construction In SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60. Petros Hadjicostas, Cyclic compositions of a positive integer with parts avoiding an arithmetic sequence, Journal of Integer Sequences, 19 (2016), Article 16.8.2. Silvana Ramaj, New Results on Cyclic Compositions and Multicompositions, Master's Thesis, Georgia Southern Univ., 2021. Index entries for sequences related to necklaces FORMULA a(n) = A000358(n)-(1+(-1)^n)/2. "CIK" (necklace, indistinct, unlabeled) transform of 1, 0, 1, 0...(odds) G.f.: Sum_{k>=1} phi(k)/k * log( 1/(1-B(x^k)) ) where B(x) = x/(1-x^2). [Joerg Arndt, Aug 06 2012] a(n) = (1/n)*Sum_{d divides n} phi(n/d)*A001350(d). - Petros Hadjicostas, Dec 27 2016 MATHEMATICA a1350[n_] := Sum[Binomial[k - 1, 2k - n] n/(n - k), {k, 0, n - 1}]; a[n_] := 1/n Sum[EulerPhi[n/d] a1350[d], {d, Divisors[n]}]; Array[a, 50] (* Jean-François Alcover, Jul 29 2018, after Petros Hadjicostas *) PROG (PARI) N=66; x='x+O('x^N); B(x)=x/(1-x^2); A=sum(k=1, N, eulerphi(k)/k*log(1/(1-B(x^k)))); Vec(A) /* Joerg Arndt, Aug 06 2012 */ (Python) from sympy import totient, lucas, divisors def A032189(n): return sum(totient(n//k)*(lucas(k)-((k&1^1)<<1)) for k in divisors(n, generator=True))//n # Chai Wah Wu, Sep 23 2023 CROSSREFS Cf. A000358, A001350, A008965. Sequence in context: A136422 A173674 A018128 * A316077 A186425 A327662 Adjacent sequences: A032186 A032187 A032188 * A032190 A032191 A032192 KEYWORD nonn AUTHOR Christian G. Bower STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 05:56 EDT 2024. Contains 375044 sequences. (Running on oeis4.)