|
|
A136422
|
|
Floor((x^n - (1-x)^n)/sqrt(3)+.5) where x = (sqrt(3)+1)/2.
|
|
0
|
|
|
1, 1, 2, 2, 3, 4, 5, 7, 10, 13, 18, 24, 33, 45, 62, 85, 116, 158, 216, 296, 404, 551, 753, 1029, 1406, 1920, 2623, 3583, 4895, 6687, 9134, 12477, 17044, 23283, 31805, 43447, 59349, 81072, 110747, 151283, 206657, 282298, 385626, 526775, 719589, 982976
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
This is analogous to the closed form of the formula for the n-th Fibonacci number. Even before truncation, these numbers are rational and the decimal part always ends in 5. For x=(sqrt(3)+1)/2, a(n)/a(n-1) -> x.
|
|
LINKS
|
|
|
FORMULA
|
The general form of x is (sqrt(r)+1)/2, r=1,2,3..
|
|
PROG
|
(PARI) g(n, r) = for(m=1, n, print1(fib(m, r)", ")) fib(n, r) = x=(sqrt(r)+1)/2; floor((x^n-(1-x)^n)/sqrt(r)+.5)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|