Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #44 Sep 23 2023 15:17:07
%S 1,1,2,2,3,4,5,7,10,14,19,30,41,63,94,142,211,328,493,765,1170,1810,
%T 2787,4340,6713,10461,16274,25414,39651,62074,97109,152287,238838,
%U 375166,589527,927554,1459961,2300347,3626242,5721044,9030451,14264308,22542397,35646311,56393862,89264834,141358275
%N Number of ways to partition n elements into pie slices each with an odd number of elements.
%C a(n) is also the total number of cyclic compositions of n into odd parts assuming that two compositions are equivalent if one can be obtained from the other by a cyclic shift. For example, a(5)=3 because 5 has the following three cyclic compositions into odd parts: 5, 1+3+1, 1+1+1+1+1. - _Petros Hadjicostas_, Dec 27 2016
%H C. G. Bower, <a href="/transforms2.html">Transforms (2)</a>
%H P. Flajolet and M. Soria, <a href="http://algo.inria.fr/flajolet/Publications/publist.html">The Cycle Construction</a> In SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.
%H Petros Hadjicostas, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Hadjicostas/hadji2.html">Cyclic compositions of a positive integer with parts avoiding an arithmetic sequence</a>, Journal of Integer Sequences, 19 (2016), Article 16.8.2.
%H Silvana Ramaj, <a href="https://digitalcommons.georgiasouthern.edu/etd/2273">New Results on Cyclic Compositions and Multicompositions</a>, Master's Thesis, Georgia Southern Univ., 2021.
%H <a href="/index/Ne#necklaces">Index entries for sequences related to necklaces</a>
%F a(n) = A000358(n)-(1+(-1)^n)/2.
%F "CIK" (necklace, indistinct, unlabeled) transform of 1, 0, 1, 0...(odds)
%F G.f.: Sum_{k>=1} phi(k)/k * log( 1/(1-B(x^k)) ) where B(x) = x/(1-x^2). [_Joerg Arndt_, Aug 06 2012]
%F a(n) = (1/n)*Sum_{d divides n} phi(n/d)*A001350(d). - _Petros Hadjicostas_, Dec 27 2016
%t a1350[n_] := Sum[Binomial[k - 1, 2k - n] n/(n - k), {k, 0, n - 1}];
%t a[n_] := 1/n Sum[EulerPhi[n/d] a1350[d], {d, Divisors[n]}];
%t Array[a, 50] (* _Jean-François Alcover_, Jul 29 2018, after _Petros Hadjicostas_ *)
%o (PARI)
%o N=66; x='x+O('x^N);
%o B(x)=x/(1-x^2);
%o A=sum(k=1,N,eulerphi(k)/k*log(1/(1-B(x^k))));
%o Vec(A)
%o /* _Joerg Arndt_, Aug 06 2012 */
%o (Python)
%o from sympy import totient, lucas, divisors
%o def A032189(n): return sum(totient(n//k)*(lucas(k)-((k&1^1)<<1)) for k in divisors(n,generator=True))//n # _Chai Wah Wu_, Sep 23 2023
%Y Cf. A000358, A001350, A008965.
%K nonn
%O 1,3
%A _Christian G. Bower_