login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030640
Discriminant of lattice A_n of determinant n+1.
2
1, 1, -3, -2, 5, 3, -7, -4, 9, 5, -11, -6, 13, 7, -15, -8, 17, 9, -19, -10, 21, 11, -23, -12, 25, 13, -27, -14, 29, 15, -31, -16, 33, 17, -35, -18, 37, 19, -39, -20, 41, 21, -43, -22, 45, 23, -47, -24, 49, 25, -51, -26, 53, 27, -55, -28, 57, 29, -59
OFFSET
0,3
REFERENCES
J. H. Conway, The Sensual Quadratic Form, Mathematical Association of America, 1997, p. 4.
G. L. Watson, Integral Quadratic Forms, Cambridge University Press, p. 2.
FORMULA
a(2n) = (-1)^n*(2*n+1), a(2n+1) = (-1)^n*(n+1). Or (apart from signs and with offset 1), a(n) = n, n odd; n/2, n even.
G.f.: (1+x-x^2)/(1+x^2)^2. - Len Smiley
a(-2-n) = (-1)^n * a(n). - Michael Somos, Jun 15 2005
a(n) = -2*a(n-2) - a(n-4); a(0)=1, a(1)=1, a(2)=-3, a(3)=-2. - Harvey P. Dale, Dec 02 2011
a(n) = (-1)^floor(n/2)*A026741(n+1).
a(2*n) = A157142(n). a(2*n - 1) = A181983(n). - Michael Somos, Feb 22 2016
EXAMPLE
G.f. = 1 + x - 3*x^2 - 2*x^3 + 5*x^4 + 3*x^5 - 7*x^6 - 4*x^7 + 8*x^9 + 5*x^10 + ...
MATHEMATICA
CoefficientList[Series[(1+x-x^2)/(1+x^2)^2, {x, 0, 60}], x] (* or *) LinearRecurrence[{0, -2, 0, -1}, {1, 1, -3, -2}, 70]
a[ n_] := With[{m = n + 1}, m I^m / If[ Mod[ m, 2] == 1, I, -2]]; (* Michael Somos, Jun 11 2013 *)
PROG
(PARI) {a(n) = if( n==-1, 0, (-1)^(n\2) * (n+1) / gcd(n+1, 2))}; /* Michael Somos, Jun 15 2005 */
(Python)
def A030640(n): return (-(n+1>>1) if n&2 else n+1>>1) if n&1 else (-n-1 if n&2 else n+1) # Chai Wah Wu, Aug 05 2024
CROSSREFS
Cf. A026741 is unsigned version.
Sequence in context: A367728 A194748 A323462 * A176447 A145051 A026741
KEYWORD
sign,easy,nice
STATUS
approved