Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Aug 05 2024 09:55:11
%S 1,1,-3,-2,5,3,-7,-4,9,5,-11,-6,13,7,-15,-8,17,9,-19,-10,21,11,-23,
%T -12,25,13,-27,-14,29,15,-31,-16,33,17,-35,-18,37,19,-39,-20,41,21,
%U -43,-22,45,23,-47,-24,49,25,-51,-26,53,27,-55,-28,57,29,-59
%N Discriminant of lattice A_n of determinant n+1.
%D J. H. Conway, The Sensual Quadratic Form, Mathematical Association of America, 1997, p. 4.
%D G. L. Watson, Integral Quadratic Forms, Cambridge University Press, p. 2.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,-2,0,-1).
%F a(2n) = (-1)^n*(2*n+1), a(2n+1) = (-1)^n*(n+1). Or (apart from signs and with offset 1), a(n) = n, n odd; n/2, n even.
%F G.f.: (1+x-x^2)/(1+x^2)^2. - _Len Smiley_
%F a(-2-n) = (-1)^n * a(n). - _Michael Somos_, Jun 15 2005
%F a(n) = -2*a(n-2) - a(n-4); a(0)=1, a(1)=1, a(2)=-3, a(3)=-2. - _Harvey P. Dale_, Dec 02 2011
%F a(n) = (-1)^floor(n/2)*A026741(n+1).
%F a(2*n) = A157142(n). a(2*n - 1) = A181983(n). - _Michael Somos_, Feb 22 2016
%e G.f. = 1 + x - 3*x^2 - 2*x^3 + 5*x^4 + 3*x^5 - 7*x^6 - 4*x^7 + 8*x^9 + 5*x^10 + ...
%t CoefficientList[Series[(1+x-x^2)/(1+x^2)^2,{x,0,60}],x] (* or *) LinearRecurrence[{0,-2,0,-1},{1,1,-3,-2},70]
%t a[ n_] := With[{m = n + 1}, m I^m / If[ Mod[ m, 2] == 1, I, -2]]; (* _Michael Somos_, Jun 11 2013 *)
%o (PARI) {a(n) = if( n==-1, 0, (-1)^(n\2) * (n+1) / gcd(n+1, 2))}; /* _Michael Somos_, Jun 15 2005 */
%o (Python)
%o def A030640(n): return (-(n+1>>1) if n&2 else n+1>>1) if n&1 else (-n-1 if n&2 else n+1) # _Chai Wah Wu_, Aug 05 2024
%Y Cf. A026741 is unsigned version.
%Y Cf. A157142, A181983.
%K sign,easy,nice
%O 0,3
%A _N. J. A. Sloane_