login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157142
Signed denominators of Leibniz series for Pi/4.
15
1, -3, 5, -7, 9, -11, 13, -15, 17, -19, 21, -23, 25, -27, 29, -31, 33, -35, 37, -39, 41, -43, 45, -47, 49, -51, 53, -55, 57, -59, 61, -63, 65, -67, 69, -71, 73, -75, 77, -79, 81, -83, 85, -87, 89, -91, 93, -95, 97, -99, 101, -103, 105, -107, 109, -111, 113, -115
OFFSET
0,2
COMMENTS
Numerators are all 1.
a(n) is also the determinant of the n X n matrix with 1's on the diagonal and 2's elsewhere (cf. A000354). - Jody Nagel (SejeongY(AT)aol.com), May 01 2010
FORMULA
Euler transform of length 2 sequence [-3, 2]. - Michael Somos, Mar 26 2011
a(n) = b(2*n + 1) where b(n) is completely multiplicative with b(2) = 0, b(p) = p if p == 1 (mod 4), b(p) = -p if p == 3 (mod 4). - Michael Somos, Mar 26 2011
With offset 1 this sequence is the exponential reversion of A005264. - Michael Somos, Mar 26 2011
a(-1 - n) = a(n), a(n + 1) + a(n - 1) = -2*a(n) for all n in Z. - Michael Somos, Mar 26 2011
E.g.f.: (1 - 2*x)*exp(-x). - Michael Somos, Mar 26 2011
a(n) = A005408(n)*A033999(n).
G.f.: (1 - x)/(1 + x)^2 = (1 - x)^3 / (1 - x^2)^2.
a(0) = 1, a(1) = -3, a(n) = -2*a(n-1) - a(n-2) for n >= 2.
Sum_{n=0..inf} 1/a(n) = Pi/4.
EXAMPLE
G.f. = 1 - 3*x + 5*x^2 - 7*x^3 + 9*x^4 - 11*x^5 + 13*x^6 - 15*x^7 + 17*x^8 + ...
MATHEMATICA
a[ n_] := (2*n + 1) * (-1)^n; (* Michael Somos, Nov 21 2022 *)
PROG
(PARI) {a(n) = (2*n + 1) * (-1)^n};
(Magma) [(2*n + 1) * (-1)^n: n in [0..70]]; // Vincenzo Librandi, Dec 23 2018
CROSSREFS
Cf. A157327. [Jaume Oliver Lafont, Mar 03 2009]
Sequence in context: A081874 A165747 A053229 * A247328 A317107 A317439
KEYWORD
frac,sign,easy
AUTHOR
Jaume Oliver Lafont, Feb 24 2009
STATUS
approved