|
|
A029960
|
|
Numbers that are palindromic in base 15.
|
|
6
|
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 226, 241, 256, 271, 286, 301, 316, 331, 346, 361, 376, 391, 406, 421, 436, 452, 467, 482, 497, 512, 527, 542, 557, 572, 587, 602, 617
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 04 2020
|
|
LINKS
|
|
|
FORMULA
|
Sum_{n>=2} 1/a(n) = 3.66254285... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020
|
|
MATHEMATICA
|
f[n_, b_]:=Module[{i=IntegerDigits[n, b]}, i==Reverse[i]]; lst={}; Do[If[f[n, 15], AppendTo[lst, n]], {n, 7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
Select[Range@ 620, PalindromeQ@ IntegerDigits[#, 15] &] (* Michael De Vlieger, May 13 2017, Version 10.3 *)
|
|
PROG
|
(PARI) isok(n) = my(d=digits(n, 15)); d == Vecrev(d); \\ Michel Marcus, May 14 2017
(Python)
from sympy import integer_log
from gmpy2 import digits
if n == 1: return 0
y = 15*(x:=15**integer_log(n>>1, 15)[0])
return int((c:=n-x)*x+int(digits(c, 15)[-2::-1]or'0', 15) if n<x+y else (c:=n-y)*y+int(digits(c, 15)[-1::-1]or'0', 15)) # Chai Wah Wu, Jun 14 2024
|
|
CROSSREFS
|
Palindromes in bases 2 through 14: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113, A029956, A029957, A029958, A029959.
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|