login
A028525
Character of extremal vertex operator algebra of rank 15.5.
3
1, 0, 248, 3875, 31124, 181753, 871627, 3623869, 13496501, 46070247, 146447007, 438436131, 1246840863, 3390992753, 8867414995, 22393107641, 54807572758, 130403285724, 302393467628, 684927912490, 1518200420906, 3298704166389, 7035880460575, 14750661826629
OFFSET
0,3
REFERENCES
G. Hoehn, Selbstduale Vertexoperatorsuperalgebren und das Babymonster, Bonner Mathematische Schriften, Vol. 286 (1996), 1-85.
LINKS
G. Hoehn (gerald(AT)math.ksu.edu), Selbstduale Vertexoperatorsuperalgebren und das Babymonster, Doctoral Dissertation, Univ. Bonn, Jul 15 1995 (pdf, ps).
FORMULA
G.f.: q^(31/24) * (b(q)^31 - 31*b(q)^7) where b(q) = q^(-1/24) * Product_{k>=0} (1+q^(2*k+1)). - Sean A. Irvine, Feb 04 2020
a(n) ~ 31^(1/4) * exp(Pi*sqrt(31*n/6)) / (2^(7/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Feb 05 2020
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[(1 + x^(2*k + 1))^31, {k, 0, nmax}] - 31*x*Product[(1 + x^(2*k + 1))^7, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 05 2020 *)
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
More terms from Sean A. Irvine, Feb 04 2020
STATUS
approved