login
A028524
Character of extremal vertex operator algebra of rank 15.
3
1, 0, 255, 3640, 27525, 154056, 713850, 2878920, 10432650, 34739200, 107930865, 316293000, 881570320, 2352362160, 6040988775, 14993606776, 36092638500, 84513447480, 192980579410, 430636071000, 940847483976, 2015771306800, 4241235245220, 8774382020520
OFFSET
0,3
REFERENCES
G. Hoehn, Selbstduale Vertexoperatorsuperalgebren und das Babymonster, Bonner Mathematische Schriften, Vol. 286 (1996), 1-85.
LINKS
G. Hoehn (gerald(AT)math.ksu.edu), Selbstduale Vertexoperatorsuperalgebren und das Babymonster, Doctoral Dissertation, Univ. Bonn, Jul 15 1995 (pdf, ps).
FORMULA
G.f.: q^(5/4) * (b(q)^30 - 30*b(q)^6) where b(q) = q^(-1/24) * Product_{k>=0} (1+q^(2*k+1)). - Sean A. Irvine, Feb 04 2020
a(n) ~ 5^(1/4) * exp(Pi*sqrt(5*n)) / (2^(3/2) * n^(3/4)). - Vaclav Kotesovec, Feb 05 2020
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[(1 + x^(2*k + 1))^30, {k, 0, nmax}] - 30*x*Product[(1 + x^(2*k + 1))^6, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 05 2020 *)
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
More terms from Sean A. Irvine, Feb 04 2020
STATUS
approved