login
A025538
a(n) = (1/s(1) - 1/s(2) + ... + d/s(n+1)) * LCM{1, 2, ..., n}, where d = (-1)^n, s = A002944, i.e., s(k) = LCM of row k of Pascal's triangle.
0
1, 0, 1, 1, 3, 9, 10, 66, 135, 395, 396, 4344, 4345, 56471, 56486, 56478, 112957, 1920251, 1920252, 36484768, 36484789, 36484767, 36484768, 839149640, 839149645, 4195748199, 4195748208, 12587244596, 12587244597, 365030093283, 365030093284
OFFSET
0,5
FORMULA
a(n) = A003418(n) * Sum_{k=1..n+1} (-1)^(k+1)/A002944(k). - Sean A. Irvine, Sep 04 2019
CROSSREFS
Sequence in context: A335029 A228450 A121057 * A070354 A174565 A074261
KEYWORD
nonn
EXTENSIONS
Title improved by Sean A. Irvine, Sep 04 2019
STATUS
approved