login
a(n) = (1/s(1) - 1/s(2) + ... + d/s(n+1)) * LCM{1, 2, ..., n}, where d = (-1)^n, s = A002944, i.e., s(k) = LCM of row k of Pascal's triangle.
0

%I #9 Sep 04 2019 17:38:38

%S 1,0,1,1,3,9,10,66,135,395,396,4344,4345,56471,56486,56478,112957,

%T 1920251,1920252,36484768,36484789,36484767,36484768,839149640,

%U 839149645,4195748199,4195748208,12587244596,12587244597,365030093283,365030093284

%N a(n) = (1/s(1) - 1/s(2) + ... + d/s(n+1)) * LCM{1, 2, ..., n}, where d = (-1)^n, s = A002944, i.e., s(k) = LCM of row k of Pascal's triangle.

%F a(n) = A003418(n) * Sum_{k=1..n+1} (-1)^(k+1)/A002944(k). - _Sean A. Irvine_, Sep 04 2019

%K nonn

%O 0,5

%A _Clark Kimberling_

%E Title improved by _Sean A. Irvine_, Sep 04 2019