%I
%S 1,2,0,2,1,0,3,2,0,0,3,2,1,0,0,3,3,2,0,0,0,3,3,2,2,0,0,0,3,3,3,4,0,0,
%T 0,0,3,3,3,4,1,0,0,0,0,3,3,3,6,2,0,0,0,0,0,3,3,3,6,2,2,0,0,0,0,0,3,3,
%U 3,6,3,4,0,0,0,0,0,0,3,3,3,6,3,4,2,0,0,0,0,0,0
%N Triangle read by rows, A000012 * A177445 * the diagonalized variant of A120562
%C Row sums = A177445. Rows apparently tend to 3 * A120562 = 3 * (1, 1, 1, 2, 1, 2, 2, 3, 1, 3,...).
%F Triangle read by rows, M*Q*R; such that M = an infinite lower triangular matrix with
%F all 1's, Q = triangle A177444, and R = the diagonalized variant of A120562
%F (A120562 as the right diagonal and the rest zeros).
%e First few rows of the triangle =
%e 1;
%e 2, 0;
%e 2, 1, 0;
%e 3, 2, 0, 0;
%e 3, 2, 1, 0, 0;
%e 3, 3, 2, 0, 0, 0;
%e 3, 3, 2, 2, 0, 0, 0;
%e 3, 3, 3, 4, 0, 0, 0, 0;
%e 3, 3, 3, 4, 1, 0, 0, 0, 0;
%e 3, 3, 3, 6, 2, 0, 0, 0, 0, 0;
%e 3, 3, 3, 6, 2, 2, 0, 0, 0, 0, 0;
%e 3, 3, 3, 6, 3, 4, 0, 0, 0, 0, 0, 0;
%e 3, 3, 3, 6, 3, 4, 2, 0, 0, 0, 0, 0, 0;
%e 3, 3, 3, 6, 3, 6, 4, 0, 0, 0, 0, 0, 0, 0;
%e 3, 3, 3, 6, 3, 6, 4, 3, 0, 0, 0, 0, 0, 0, 0;
%e ...
%Y Cf. A177444, A177445, A120562
%K nonn,tabl
%O 0,2
%A _Gary W. Adamson_, May 08 2010
