login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023868
a(n) = 1*t(n) + 2*t(n-1) + ... + k*t(n+1-k), where k=floor((n+1)/2) and t is A023533.
1
1, 0, 0, 1, 2, 3, 4, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 23, 25, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32
OFFSET
1,5
LINKS
FORMULA
a(n) = Sum_{j=1..floor((n+1)/2)} j * A023533(n-j+1).
MATHEMATICA
A023533[n_]:= A023533[n]= If[Binomial[Floor[Surd[6*n-1, 3]] +2, 3]!= n, 0, 1];
A023868[n_]:= A023868[n]= Sum[j*A023533[n-j+1], {j, Floor[(n+1)/2]}];
Table[A023868[n], {n, 100}] (* G. C. Greubel, Jul 21 2022 *)
PROG
(Magma)
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
[(&+[k*A023533(n+1-k): k in [1..Floor((n+1)/2)]]): n in [1..100]]; // G. C. Greubel, Jul 18 2022
(SageMath)
def A023533(n): return 0 if (binomial(floor((6*n-1)^(1/3)) +2, 3)!= n) else 1
def A023868(n): return sum(j*A023533(n-j+1) for j in (1..((n+1)//2)))
[A023868(n) for n in (1..100)] # G. C. Greubel, Jul 21 2022
CROSSREFS
Cf. A023533.
Sequence in context: A037883 A350775 A330267 * A122275 A197024 A031235
KEYWORD
nonn
EXTENSIONS
Title simplified by Sean A. Irvine, Jun 12 2019
STATUS
approved