OFFSET
1,1
COMMENTS
Also, a(n) = s(1)t(n) + s(2)t(n-1) + ... + s(k)t(n-k+1), where k = [ n/2 ], s = (natural numbers), t = (1, p(1), p(2), ... ).
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
MATHEMATICA
Table[Sum[j*Prime[n+1-j], {j, 1, Floor[(n+1)/2]}], {n, 1, 50}] (* G. C. Greubel, Jun 12 2019 *)
PROG
(PARI) {a(n) = sum(j=1, floor((n+1)/2), j*prime(n+1-j))}; \\ G. C. Greubel, Jun 12 2019
(Magma) [(&+[j*NthPrime(n+1-j): j in [1..Floor((n+1)/2)]]): n in [1..50]]; // G. C. Greubel, Jun 12 2019
(Sage) [sum(j*nth_prime(n+1-j) for j in (1..floor((n+1)/2))) for n in (1..50)] # G. C. Greubel, Jun 12 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Title simplified by Sean A. Irvine, Jun 12 2019
STATUS
approved