The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A023867 a(n) = 1*t(n) + 2*t(n-1) + ...+ k*t(n+1-k), where k=floor((n+1)/2) and t is A001950 (upper Wythoff sequence). 1
 2, 5, 17, 24, 54, 71, 127, 153, 242, 279, 409, 465, 645, 717, 954, 1052, 1354, 1473, 1848, 1989, 2444, 2620, 3164, 3367, 4007, 4239, 4983, 5260, 6116, 6426, 7402, 7764, 8868, 9269, 10509, 10950, 12333, 12835, 14370, 14917, 16611, 17226, 19087, 19752, 21788, 22504 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 MATHEMATICA f[n_]:= n +Floor[n*GoldenRatio]; Table[Sum[j*f[n+1-j], {j, 1, Floor[(n + 1)/2]}], {n, 1, 50}] (* G. C. Greubel, Jun 12 2019 *) PROG (PARI) f(n) = n + floor(n*(1+sqrt(5))/2); a(n) = sum(j=1, floor((n+1)/2), j*f(n+1-j)); \\ G. C. Greubel, Jun 12 2019 (MAGMA) f:= func< n | n + Floor(n*(1+Sqrt(5))/2) >; [(&+[j*f(n+1-j): j in [1..Floor((n+1)/2)]]): n in [1..50]]; // G. C. Greubel, Jun 12 2019 (Sage) def f(n): return n + floor(n*golden_ratio) [sum(j*f(n+1-j) for j in (1..floor((n+1)/2))) for n in (1..50)] # G. C. Greubel, Jun 12 2019 CROSSREFS Sequence in context: A023244 A188535 A176582 * A024594 A106215 A211548 Adjacent sequences:  A023864 A023865 A023866 * A023868 A023869 A023870 KEYWORD nonn AUTHOR EXTENSIONS Title simplified by Sean A. Irvine, Jun 12 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 17:44 EDT 2021. Contains 345365 sequences. (Running on oeis4.)