login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023867
a(n) = 1*t(n) + 2*t(n-1) + ...+ k*t(n+1-k), where k=floor((n+1)/2) and t is A001950 (upper Wythoff sequence).
1
2, 5, 17, 24, 54, 71, 127, 153, 242, 279, 409, 465, 645, 717, 954, 1052, 1354, 1473, 1848, 1989, 2444, 2620, 3164, 3367, 4007, 4239, 4983, 5260, 6116, 6426, 7402, 7764, 8868, 9269, 10509, 10950, 12333, 12835, 14370, 14917, 16611, 17226, 19087, 19752, 21788, 22504
OFFSET
1,1
LINKS
MATHEMATICA
f[n_]:= n +Floor[n*GoldenRatio]; Table[Sum[j*f[n+1-j], {j, 1, Floor[(n + 1)/2]}], {n, 1, 50}] (* G. C. Greubel, Jun 12 2019 *)
PROG
(PARI) f(n) = n + floor(n*(1+sqrt(5))/2);
a(n) = sum(j=1, floor((n+1)/2), j*f(n+1-j)); \\ G. C. Greubel, Jun 12 2019
(Magma) f:= func< n | n + Floor(n*(1+Sqrt(5))/2) >;
[(&+[j*f(n+1-j): j in [1..Floor((n+1)/2)]]): n in [1..50]]; // G. C. Greubel, Jun 12 2019
(Sage)
def f(n): return n + floor(n*golden_ratio)
[sum(j*f(n+1-j) for j in (1..floor((n+1)/2))) for n in (1..50)] # G. C. Greubel, Jun 12 2019
CROSSREFS
Sequence in context: A023244 A188535 A176582 * A024594 A106215 A211548
KEYWORD
nonn
EXTENSIONS
Title simplified by Sean A. Irvine, Jun 12 2019
STATUS
approved