login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023528
Exponent of 2 in prime factorization of prime(n)*prime(n-1) + 1.
1
0, 0, 4, 2, 1, 4, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 3, 4, 3, 1, 6, 3, 1, 2, 1, 1, 2, 1, 4, 1, 4, 1, 2, 2, 3, 2, 2, 3, 1, 2, 3, 4, 2, 12, 1, 2, 1, 1, 1, 4, 1, 3, 8, 2, 2, 3, 2, 2, 2, 1, 2, 3, 5, 1, 6, 1, 5, 2, 2, 4, 1, 3, 1, 2, 3, 1, 2, 1, 1, 1
OFFSET
1,3
COMMENTS
Assumes the not generally accepted convention prime(0) = 1. - Michel Marcus, Jun 06 2019
LINKS
FORMULA
a(n) = A007814(A023523(n)). - Michel Marcus, Jun 06 2019
MATHEMATICA
Join[{0}, FactorInteger[#][[1, 2]]&/@(Times@@@Partition[Prime[Range[ 80]], 2, 1]+1)] (* Harvey P. Dale, Dec 25 2011 *)
PROG
(PARI) p(n) = if (n==0, 1, prime(n));
a(n) = valuation(p(n)*p(n-1) + 1, 2); \\ Michel Marcus, Jun 06 2019
(Magma) p:=PrimesUpTo(10000); sol:=[]; sol[1]:=0; for n in [2..80] do sol[n]:=Valuation(1+p[n]*p[n-1], 2); end for; sol; // Marius A. Burtea, Jun 06 2019
(Python)
from sympy import prime
def A023528(n): return 0 if n == 1 else (~(m:=prime(n)*prime(n-1)+1)& m-1).bit_length() # Chai Wah Wu, Jul 07 2022
CROSSREFS
Sequence in context: A010311 A346972 A326485 * A236308 A105698 A105699
KEYWORD
nonn
EXTENSIONS
a(1)=a(2)=0 corrected by Sean A. Irvine, Jun 05 2019
STATUS
approved