The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326485 T(n, k) = 2^A050605(n) * n! * [x^k] [z^n] (4*exp(x*z))/(exp(z) + 1)^2, triangle read by rows, for 0 <= k <= n. 1
 1, -1, 1, 1, -4, 2, 1, 3, -6, 2, -1, 2, 3, -4, 1, -1, -5, 5, 5, -5, 1, 17, -24, -60, 40, 30, -24, 4, 17, 119, -84, -140, 70, 42, -28, 4, -31, 34, 119, -56, -70, 28, 14, -8, 1, -31, -279, 153, 357, -126, -126, 42, 18, -9, 1, 691, -620, -2790, 1020, 1785, -504, -420, 120, 45, -20, 2 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS These are the coefficients of the generalized Euler polynomials (case m=2) with a different normalization. See A326480 for further comments. LINKS EXAMPLE Triangle starts: [0] [  1] [1] [ -1,    1] [2] [  1,   -4,   2] [3] [  1,    3,  -6,    2] [4] [ -1,    2,   3,   -4,    1] [5] [ -1,   -5,   5,    5,   -5,    1] [6] [ 17,  -24, -60,   40,   30,  -24,   4] [7] [ 17,  119, -84, -140,   70,   42, -28,  4] [8] [-31,   34, 119,  -56,  -70,   28,  14, -8,  1] [9] [-31, -279, 153,  357, -126, -126,  42, 18, -9, 1] MAPLE E2n := proc(n) (4*exp(x*z))/(exp(z) + 1)^2; series(%, z, 48); 2^A050605(n)*n!*coeff(%, z, n) end: for n from 0 to 9 do PolynomialTools:-CoefficientList(E2n(n), x) od; CROSSREFS Cf. A326480, A050605. Sequence in context: A071406 A337063 A010311 * A023528 A236308 A105698 Adjacent sequences:  A326482 A326483 A326484 * A326486 A326487 A326488 KEYWORD sign,tabl AUTHOR Peter Luschny, Jul 12 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 09:22 EDT 2021. Contains 345358 sequences. (Running on oeis4.)