login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022682 Expansion of Product_{m>=1} (1-m*q^m)^22. 2
1, -22, 187, -638, -561, 10582, -20460, -44132, 157311, 154132, -468666, -1959718, 2247421, 12556104, -8229859, -41049558, -43660639, 121417780, 408706870, -100429384, -1145215709, -2659879552, 853739235, 13377528824 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

MAPLE

seq(coeff(series(mul((1-m*x^m)^22, m=1..n), x, n+1), x, n), n=0..30); # Muniru A Asiru, Jul 19 2018

MATHEMATICA

With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^22, {k, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Jul 19 2018 *)

PROG

(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1-n*q^n)^22)) \\ G. C. Greubel, Jul 19 2018

(MAGMA) Coefficients(&*[(1-m*x^m)^22:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Jul 19 2018

CROSSREFS

Sequence in context: A129126 A231749 A072040 * A107959 A200936 A110690

Adjacent sequences:  A022679 A022680 A022681 * A022683 A022684 A022685

KEYWORD

sign

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 16 01:43 EST 2019. Contains 330013 sequences. (Running on oeis4.)