login
A022682
Expansion of Product_{m>=1} (1-m*q^m)^22.
2
1, -22, 187, -638, -561, 10582, -20460, -44132, 157311, 154132, -468666, -1959718, 2247421, 12556104, -8229859, -41049558, -43660639, 121417780, 408706870, -100429384, -1145215709, -2659879552, 853739235, 13377528824
OFFSET
0,2
LINKS
MAPLE
seq(coeff(series(mul((1-m*x^m)^22, m=1..n), x, n+1), x, n), n=0..30); # Muniru A Asiru, Jul 19 2018
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^22, {k, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Jul 19 2018 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1-n*q^n)^22)) \\ G. C. Greubel, Jul 19 2018
(Magma) Coefficients(&*[(1-m*x^m)^22:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Jul 19 2018
CROSSREFS
Sequence in context: A129126 A231749 A072040 * A107959 A200936 A110690
KEYWORD
sign
STATUS
approved