login
A110690
Kekulé numbers for certain benzenoids.
1
1, 22, 193, 1045, 4180, 13566, 37764, 93456, 210705, 440440, 864721, 1610401, 2866864, 4908580, 8123280, 13046616, 20404233, 31162242, 46587145, 68316325, 98440276, 139597810, 195085540, 268983000, 366294825, 493111476, 656790057
OFFSET
0,2
REFERENCES
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 243, H*(2,6,n)).
LINKS
FORMULA
a(n) = (n+1)*(n+2)^2*(n+3)*(n+4)(31*n^3 + 236*n^2 + 545*n + 420)/20160.
G.f.: (1 + 13*x + 31*x^2 + 16*x^3 + x^4)/(1-x)^9. - R. J. Mathar, Nov 01 2015
MAPLE
a:=n->(n+1)*(n+2)^2*(n+3)*(n+4)*(31*n^3+236*n^2+545*n+420)/20160: seq(a(n), n=0..31);
MATHEMATICA
CoefficientList[Series[(1+13*x+31*x^2+16*x^3+x^4)/(1-x)^9, {x, 0, 50}], x] (* G. C. Greubel, Sep 06 2017 *)
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 22, 193, 1045, 4180, 13566, 37764, 93456, 210705}, 30] (* Harvey P. Dale, Nov 05 2019 *)
PROG
(Python)
A110690_list, m = [], [62, -65, 20, 0, 1, 1, 1, 1, 1]
for _ in range(10001):
A110690_list.append(m[-1])
for i in range(8):
m[i+1] += m[i] # Chai Wah Wu, Jun 12 2016
(PARI) x='x+O('x^50); Vec((1+13*x+31*x^2+16*x^3+x^4)/(1-x)^9) \\ G. C. Greubel, Sep 06 2017
CROSSREFS
Sequence in context: A022682 A107959 A200936 * A020923 A254470 A230896
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Aug 02 2005
STATUS
approved