login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022684
Expansion of Product_{m>=1} (1-m*q^m)^24.
2
1, -24, 228, -944, 114, 13920, -40824, -35568, 314943, -32016, -1256028, -1702560, 7990622, 15859872, -44241384, -69900560, 66340899, 389812176, 368445848, -1602538800, -2603154606, 114976000, 12365751792
OFFSET
0,2
COMMENTS
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -24, g(n) = n. - Seiichi Manyama, Dec 29 2017
LINKS
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^24, {k, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Jul 19 2018 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1-n*q^n)^24)) \\ G. C. Greubel, Jul 19 2018
(Magma) Coefficients(&*[(1-m*x^m)^24:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Jul 19 2018
CROSSREFS
Column k=24 of A297323.
Sequence in context: A181710 A201192 A345648 * A297752 A027275 A027260
KEYWORD
sign
STATUS
approved