Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 08 2022 08:44:46
%S 1,-24,228,-944,114,13920,-40824,-35568,314943,-32016,-1256028,
%T -1702560,7990622,15859872,-44241384,-69900560,66340899,389812176,
%U 368445848,-1602538800,-2603154606,114976000,12365751792
%N Expansion of Product_{m>=1} (1-m*q^m)^24.
%C This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -24, g(n) = n. - _Seiichi Manyama_, Dec 29 2017
%H Seiichi Manyama, <a href="/A022684/b022684.txt">Table of n, a(n) for n = 0..1000</a>
%t With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^24, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Jul 19 2018 *)
%o (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n)^24)) \\ _G. C. Greubel_, Jul 19 2018
%o (Magma) Coefficients(&*[(1-m*x^m)^24:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Jul 19 2018
%Y Column k=24 of A297323.
%K sign
%O 0,2
%A _N. J. A. Sloane_