login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A107959 a(n) = (n+1)(n+2)^2*(n+3)^2*(n+4)(n^2 + 5n + 5)/720. 1
1, 22, 190, 1015, 4018, 12936, 35784, 88110, 197835, 412126, 806806, 1498861, 2662660, 4550560, 7518624, 12058236, 18834453, 28731990, 42909790, 62865187, 90508726, 128250760, 179101000, 246782250, 335859615, 451886526, 601568982 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Kekulé numbers for certain benzenoids.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 229).

Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).

FORMULA

From Colin Barker, Apr 22 2020: (Start)

G.f.: (1 + 13*x + 28*x^2 + 13*x^3 + x^4) / (1 - x)^9.

a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>8.

(End)

MAPLE

a:=n->(1/720)*(n+1)*(n+2)^2*(n+3)^2*(n+4)*(n^2+5*n+5): seq(a(n), n=0..30);

MATHEMATICA

Table[(n+1)(n+2)^2(n+3)^2(n+4)(n^2+5n+5)/720, {n, 0, 30}] (* or *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 22, 190, 1015, 4018, 12936, 35784, 88110, 197835}, 30] (* Harvey P. Dale, Sep 27 2020 *)

PROG

(PARI) Vec((1 + 13*x + 28*x^2 + 13*x^3 + x^4) / (1 - x)^9 + O(x^30)) \\ Colin Barker, Apr 22 2020

CROSSREFS

Sequence in context: A231749 A072040 A022682 * A200936 A110690 A020923

Adjacent sequences:  A107956 A107957 A107958 * A107960 A107961 A107962

KEYWORD

nonn,easy

AUTHOR

Emeric Deutsch, Jun 12 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 2 15:54 EST 2021. Contains 341751 sequences. (Running on oeis4.)