login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022682 Expansion of Product_{m>=1} (1-m*q^m)^22. 2

%I #14 Sep 08 2022 08:44:46

%S 1,-22,187,-638,-561,10582,-20460,-44132,157311,154132,-468666,

%T -1959718,2247421,12556104,-8229859,-41049558,-43660639,121417780,

%U 408706870,-100429384,-1145215709,-2659879552,853739235,13377528824

%N Expansion of Product_{m>=1} (1-m*q^m)^22.

%H G. C. Greubel, <a href="/A022682/b022682.txt">Table of n, a(n) for n = 0..1000</a>

%p seq(coeff(series(mul((1-m*x^m)^22,m=1..n), x,n+1),x,n),n=0..30); # _Muniru A Asiru_, Jul 19 2018

%t With[{nmax = 50}, CoefficientList[Series[Product[(1 - k*q^k)^22, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Jul 19 2018 *)

%o (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1-n*q^n)^22)) \\ _G. C. Greubel_, Jul 19 2018

%o (Magma) Coefficients(&*[(1-m*x^m)^22:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Jul 19 2018

%K sign

%O 0,2

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 19:06 EDT 2024. Contains 371962 sequences. (Running on oeis4.)