login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022413
Kim-sums: "Kimberling sums" K_n + K_2.
6
1, 5, 8, 10, 13, 16, 18, 21, 23, 26, 29, 31, 34, 37, 39, 42, 44, 47, 50, 52, 55, 57, 60, 63, 65, 68, 71, 73, 76, 78, 81, 84, 86, 89, 92, 94, 97, 99, 102, 105, 107, 110, 112, 115, 118, 120, 123, 126, 128, 131, 133, 136, 139, 141, 144, 146, 149, 152, 154, 157, 160, 162, 165, 167, 170, 173, 175, 178
OFFSET
0,2
COMMENTS
Let W(i,j) denote the index of that row of the extended Wythoff array (see A035513) that contains the sequence formed by the sum of rows i and j. Then the "Kim-sum" or "Kimberling-sum" K_n + K_i is W(i-1,n). - N. J. A. Sloane, Mar 08 2016
The n-th Kimberling sequence K_n is defined (cf Links) by K_n(i) = K_n(i-1) + K_n(i-2), with initial values K_n(0) = n, K_n(1) = floor((n+1)*tau). - M. F. Hasler, Sep 02 2016
REFERENCES
J. H. Conway, Posting to Math Fun Mailing List, Dec 02 1996.
M. LeBrun, Posting to Math-Fun Mailing List Jan 10 1997.
LINKS
J. H. Conway, Allan Wechsler, Marc LeBrun, Dan Hoey, N. J. A. Sloane, On Kimberling Sums and Para-Fibonacci Sequences, Correspondence and Postings to Math-Fun Mailing List, Nov 1996 to Jan 1997
FORMULA
a(n) = 1 if n=0, otherwise a(n) = A000201(n)+n+3. - N. J. A. Sloane, Mar 07 2016
MATHEMATICA
a[n_] := If[n == 0, 1, Floor[n GoldenRatio] + n + 3];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 15 2023 *)
PROG
(Python)
from math import isqrt
def A022413(n): return (n+isqrt(5*n**2)>>1)+n+3 if n else 1 # Chai Wah Wu, Aug 29 2022
CROSSREFS
The "Kim-sums" K_n + K_i for i = 2 through 12 are given in A022413, A022414, A022415, ..., A022423.
Sequence in context: A335495 A355569 A280537 * A078781 A256359 A287073
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited and extended by N. J. A. Sloane, Mar 07 2016
STATUS
approved