login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022415
Kim-sums: "Kimberling sums" K_n + K_4.
4
3, 10, 13, 15, 18, 21, 23, 26, 28, 31, 34, 36, 39, 42, 44, 47, 49, 52, 55, 57, 60, 62, 65, 68, 70, 73, 76, 78, 81, 83, 86, 89, 91, 94, 97, 99, 102, 104, 107, 110, 112, 115, 117, 120, 123, 125, 128, 131, 133, 136, 138, 141, 144, 146, 149, 151, 154, 157, 159, 162, 165, 167, 170, 172, 175, 178
OFFSET
0,1
REFERENCES
Posting to math-fun mailing list Jan 10 1997.
LINKS
J. H. Conway, Allan Wechsler, Marc LeBrun, Dan Hoey, N. J. A. Sloane, On Kimberling Sums and Para-Fibonacci Sequences, Correspondence and Postings to Math-Fun Mailing List, Nov 1996 to Jan 1997
MAPLE
Ki := proc(n, i)
option remember;
local phi ;
phi := (1+sqrt(5))/2 ;
if i= 0 then
n;
elif i=1 then
floor((n+1)*phi) ;
else
procname(n, i-1)+procname(n, i-2) ;
end if;
end proc:
Kisum := proc(n, m)
local ks, a, i;
ks := [seq( Ki(n, i)+Ki(m, i), i=0..5)] ;
for i from 0 to 2 do
for a from 0 do
if Ki(a, 0) = ks[i+1] and Ki(a, 1) = ks[i+2] then
return a;
end if;
if Ki(a, 0) > ks[i+1] then
break;
end if;
end do:
end do:
end proc:
A022415 := proc(n)
if n = 0 then
3;
else
Kisum(n-1, 3) ;
end if;
end proc:
seq(A022415(n), n=0..80) ; # R. J. Mathar, Sep 03 2016
MATHEMATICA
Ki[n_, i_] := Ki[n, i] = Which[i == 0, n, i == 1, Floor[(n + 1)* GoldenRatio], True, Ki[n, i - 1] + Ki[n, i - 2]];
Kisum[n_, m_] := Module[{ks, a, i}, ks = Table[Ki[n, i] + Ki[m, i], {i, 0, 5}]; For[i = 0, i <= 2, i++, For[a = 0, True, a++, If[Ki[a, 0] == ks[[i + 1]] && Ki[a, 1] == ks[[i + 2]], Return@a]; If[Ki[a, 0] > ks[[i + 1]], Break[]]]]];
a[n_] := If[n == 0, 3, Kisum[n - 1, 3]];
Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Oct 15 2023, after R. J. Mathar *)
CROSSREFS
The "Kim-sums" K_n + K_i for i = 2 through 12 are given in A022413, A022414, A022415, A022416, ..., A022423.
Sequence in context: A358266 A299403 A174242 * A344619 A299983 A188373
KEYWORD
nonn
AUTHOR
STATUS
approved