The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022194 Gaussian binomial coefficients [ n,11 ] for q = 2. 1
 1, 4095, 11180715, 26167664835, 57162391576563, 120843139740969555, 251413193158549532435, 518946525150879134496915, 1066968301301093995246996371, 2189425218271613769209626653075, 4488323837657412597958687922896275 (list; graph; refs; listen; history; text; internal format)
 OFFSET 11,2 REFERENCES F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698. LINKS Vincenzo Librandi, Table of n, a(n) for n = 11..200 FORMULA a(n) = Product_{i=1..11} (2^(n-i+1)-1)/(2^i-1), by definition. - Vincenzo Librandi, Aug 03 2016 MATHEMATICA QBinomial[Range[11, 30], 11, 2] (* Harvey P. Dale, Oct 21 2014 *) PROG (Sage) [gaussian_binomial(n, 11, 2) for n in range(11, 22)] # Zerinvary Lajos, May 25 2009 (MAGMA) r:=11; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 03 2016 (PARI) r=11; q=2; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018 CROSSREFS Sequence in context: A321557 A321551 A161004 * A069387 A069413 A069439 Adjacent sequences:  A022191 A022192 A022193 * A022195 A022196 A022197 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 13:24 EST 2020. Contains 331193 sequences. (Running on oeis4.)