login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022192 Gaussian binomial coefficients [ n,9 ] for q = 2. 2
1, 1023, 698027, 408345795, 222984027123, 117843461817939, 61291693863308051, 31627961868755063955, 16256896431763117598611, 8339787869494479328087443, 4274137206973266943778085267, 2189425218271613769209626653075 (list; graph; refs; listen; history; text; internal format)
OFFSET

9,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 9..200

FORMULA

a(n) = Product_{i=1..9} (2^(n-i+1)-1)/(2^i-1), by definition. - Vincenzo Librandi, Aug 02 2016

G.f.: x^9/Product_{0<=i<=9} (1-2^i*x). - Robert Israel, Apr 23 2017

MAPLE

seq(eval(expand(QDifferenceEquations:-QBinomial(n, 9, q)), q=2), n=9..50);

MATHEMATICA

QBinomial[Range[9, 20], 9, 2] (* Harvey P. Dale, Jul 24 2016 *)

PROG

(Sage) [gaussian_binomial(n, 9, 2) for n in range(9, 21)] # Zerinvary Lajos, May 25 2009

(Magma) r:=9; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 03 2016

(PARI) r=9; q=2; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018

CROSSREFS

Sequence in context: A321555 A321549 A160959 * A069385 A069411 A069437

Adjacent sequences: A022189 A022190 A022191 * A022193 A022194 A022195

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

Offset changed by Vincenzo Librandi, Aug 03 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 10:02 EST 2022. Contains 358411 sequences. (Running on oeis4.)