%I #23 Sep 08 2022 08:44:46
%S 1,4095,11180715,26167664835,57162391576563,120843139740969555,
%T 251413193158549532435,518946525150879134496915,
%U 1066968301301093995246996371,2189425218271613769209626653075,4488323837657412597958687922896275
%N Gaussian binomial coefficients [ n,11 ] for q = 2.
%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
%H Vincenzo Librandi, <a href="/A022194/b022194.txt">Table of n, a(n) for n = 11..200</a>
%F a(n) = Product_{i=1..11} (2^(n-i+1)-1)/(2^i-1), by definition. - _Vincenzo Librandi_, Aug 03 2016
%t QBinomial[Range[11,30],11,2] (* _Harvey P. Dale_, Oct 21 2014 *)
%o (Sage) [gaussian_binomial(n,11,2) for n in range(11,22)] # _Zerinvary Lajos_, May 25 2009
%o (Magma) r:=11; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 03 2016
%o (PARI) r=11; q=2; for(n=r,30, print1(prod(j=1,r,(1-q^(n-j+1))/(1-q^j)), ", ")) \\ _G. C. Greubel_, May 30 2018
%K nonn
%O 11,2
%A _N. J. A. Sloane_