|
|
A022196
|
|
Gaussian binomial coefficients [ n,5 ] for q = 3.
|
|
1
|
|
|
1, 364, 99463, 25095280, 6174066262, 1506472167928, 366573514642546, 89117945389585840, 21658948312410865183, 5263390747480701708292, 1279025522911365763892449, 310804949350361548416923680, 75525744222315755534269847164
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
5,2
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 5..200
|
|
FORMULA
|
G.f.: x^5/((1-x)*(1-3*x)*(1-9*x)*(1-27*x)*(1-81*x)*(1-243*x)). - Vincenzo Librandi, Aug 07 2016
a(n) = Product_{i=1..5} (3^(n-i+1)-1)/(3^i-1), by definition. - Vincenzo Librandi, Aug 06 2016
|
|
MATHEMATICA
|
Table[QBinomial[n, 5, 3], {n, 5, 20}] (* Vincenzo Librandi, Aug 07 2016 *)
|
|
PROG
|
(Sage) [gaussian_binomial(n, 5, 3) for n in range(5, 17)] # Zerinvary Lajos, May 25 2009
(Magma) r:=5; q:=3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 07 2016
(PARI) r=5; q=3; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018
|
|
CROSSREFS
|
Sequence in context: A107509 A140935 A249671 * A098252 A221393 A099113
Adjacent sequences: A022193 A022194 A022195 * A022197 A022198 A022199
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
Offset changed by Vincenzo Librandi, Aug 07 2016
|
|
STATUS
|
approved
|
|
|
|