The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022199 Gaussian binomial coefficients [ n,8 ] for q = 3. 1
 1, 9841, 72636421, 494894285941, 3287582741506063, 21658948312410865183, 142299528422960399756323, 934054234760012359481199283, 6129263888495201102915629695046, 40216143252770054194345243936096486, 263862583736385343242102717216527933566 (list; graph; refs; listen; history; text; internal format)
 OFFSET 8,2 REFERENCES F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698. LINKS Vincenzo Librandi, Table of n, a(n) for n = 8..200 FORMULA G.f.: x^8/((1-x)*(1-3*x)*(1-9*x)*(1-27*x)*(1-81*x)*(1-243*x)*(1-729*x)*(1-2187*x)*(1-6561*x)). - Vincenzo Librandi, Aug 07 2016 a(n) = Product_{i=1..8} (3^(n-i+1)-1)/(3^i-1), by definition. - Vincenzo Librandi, Aug 07 2016 MATHEMATICA Table[QBinomial[n, 8, 3], {n, 8, 20}] (* Vincenzo Librandi, Aug 07 2016 *) PROG (Sage) [gaussian_binomial(n, 8, 3) for n in range(8, 19)] # Zerinvary Lajos, May 25 2009 (MAGMA) r:=8; q:=3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 07 2016 (PARI) r=8; q=3; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018 CROSSREFS Sequence in context: A237064 A251977 A196897 * A203809 A257299 A208646 Adjacent sequences:  A022196 A022197 A022198 * A022200 A022201 A022202 KEYWORD nonn,easy AUTHOR EXTENSIONS Offset changed by Vincenzo Librandi, Aug 07 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 10:34 EST 2020. Contains 331337 sequences. (Running on oeis4.)