login
A020927
Expansion of (1-4*x)^(15/2).
4
1, -30, 390, -2860, 12870, -36036, 60060, -51480, 12870, 2860, 1716, 1560, 1820, 2520, 3960, 6864, 12870, 25740, 54340, 120120, 276276, 657800, 1614600, 4071600, 10518300, 27768312, 74760840, 204900080, 570793080, 1613966640, 4626704368, 13432367520
OFFSET
0,2
FORMULA
D-finite with recurrence: n*a(n) +2*(-2*n+17)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
From Amiram Eldar, Mar 25 2022: (Start)
a(n) = (-4)^n*binomial(15/2, n).
Sum_{n>=0} 1/a(n) = 972/1001 + 34*Pi/(3^10*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 18235778692/17595703125 - 68*log(phi)/(5^9*sqrt(5)), where phi is the golden ratio (A001622). (End)
MATHEMATICA
CoefficientList[Series[(1-4x)^(15/2), {x, 0, 30}], x] (* Harvey P. Dale, Oct 03 2012 *)
KEYWORD
sign
STATUS
approved