The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002423 Expansion of (1-4*x)^(7/2). (Formerly M4934 N2114) 12
 1, -14, 70, -140, 70, 28, 28, 40, 70, 140, 308, 728, 1820, 4760, 12920, 36176, 104006, 305900, 917700, 2801400, 8684340, 27293640, 86843400, 279409200, 908079900, 2978502072, 9851968392, 32839894640 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 N. J. A. Sloane, Notes on A984 and A2420-A2424 FORMULA a(n) = Sum_{m=0..n} binomial(n, m) * K_m(8), where K_m(x) = K_m(n, 2, x) is a Krawtchouk polynomial. - Alexander Barg (abarg(AT)research.bell-labs.com) a(n) ~ 105*4^(n-2)/(sqrt(Pi)*n^(9/2)). - Vaclav Kotesovec, Jul 28 2013 a(n) = (105/16)*4^n*Gamma(-7/2+n)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015 a(n) = (-4)^n * binomial(7/2, n). - G. C. Greubel, Jul 03 2019 D-finite with recurrence: n*a(n) +2*(-2*n+9)*a(n-1)=0. - R. J. Mathar, Jan 16 2020 From Amiram Eldar, Mar 24 2022: (Start) Sum_{n>=0} 1/a(n) = 36/35 + 2*Pi/(3^4*sqrt(3)). Sum_{n>=0} (-1)^n/a(n) = 23932/21875 - 36*log(phi)/(5^5*sqrt(5)), where phi is the golden ratio (A001622). (End) MAPLE A002423 := n -> (105/16)*4^n*GAMMA(-7/2+n)/(sqrt(Pi)*GAMMA(1+n)): seq(A002423(n), n=0..27); # Peter Luschny, Dec 14 2015 MATHEMATICA CoefficientList[Series[(1-4*x)^(7/2), {x, 0, 30}], x] (* Jean-François Alcover, Mar 21 2011 *) Table[(4^(-1+x) Pochhammer[-(7/2), -1+x])/Pochhammer[1, -1+x], {x, 30}] (* Harvey P. Dale, Jul 13 2011 *) PROG (PARI) vector(30, n, n--; (-4)^n*binomial(7/2, n)) \\ G. C. Greubel, Jul 03 2019 (Magma) R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-4*x)^(7/2) )); // G. C. Greubel, Jul 03 2019 (Sage) [(-4)^n*binomial(7/2, n) for n in (0..30)] # G. C. Greubel, Jul 03 2019 CROSSREFS Cf. A007054, A004001, A002420, A002421, A002422, A002424, A007272, A001622. Sequence in context: A008354 A051879 A236157 * A212751 A212749 A201106 Adjacent sequences:  A002420 A002421 A002422 * A002424 A002425 A002426 KEYWORD sign,easy,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 05:51 EDT 2022. Contains 353933 sequences. (Running on oeis4.)