The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002424 Expansion of (1-4*x)^(9/2). (Formerly M5058 N2188) 11
 1, -18, 126, -420, 630, -252, -84, -72, -90, -140, -252, -504, -1092, -2520, -6120, -15504, -40698, -110124, -305900, -869400, -2521260, -7443720, -22331160, -67964400, -209556900, -653817528, -2062039896, -6567978928, -21111360840 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Alexander Barg, Stolarsky's invariance principle for finite metric spaces, arXiv:2005.12995 [math.CO], 2020. N. J. A. Sloane, Notes on A984 and A2420-A2424. FORMULA a(n) = Sum_{m=0..n} binomial(n, m) * K_m(10), where K_m(x) = K_m(n, 2, x) is a Krawtchouk polynomial. - Alexander Barg, abarg(AT)research.bell-labs.com. a(n) = -(945/32)*4^n*Gamma(-9/2+n)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015 a(n) = (-4)^n*binomial(9/2, n). - G. C. Greubel, Jul 03 2019 D-finite with recurrence: n*a(n) +2*(-2*n+11)*a(n-1)=0. - R. J. Mathar, Jan 16 2020 From Amiram Eldar, Mar 25 2022: (Start) Sum_{n>=0} 1/a(n) = 32/35 - 22*Pi/(3^7*sqrt(3)). Sum_{n>=0} (-1)^n/a(n) = 1050752/984375 - 44*log(phi)/(5^6*sqrt(5)), where phi is the golden ratio (A001622). (End) MAPLE A002424 := n -> -(945/32)*4^n*GAMMA(-9/2+n)/(sqrt(Pi)*GAMMA(1+n)): seq(A002424(n), n=0..28); # Peter Luschny, Dec 14 2015 MATHEMATICA CoefficientList[Series[(1-4x)^(9/2), {x, 0, 30}], x] (* Harvey P. Dale, Dec 27 2011 *) PROG (PARI) my(x='x+O('x^30)); Vec((1-4*x)^(9/2)) \\ Altug Alkan, Dec 14 2015 (PARI) vector(30, n, n--; (-4)^n*binomial(9/2, n)) \\ G. C. Greubel, Jul 03 2019 (Magma) R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-4*x)^(9/2) )); // G. C. Greubel, Jul 03 2019 (Sage) [(-4)^n*binomial(9/2, n) for n in (0..30)] # G. C. Greubel, Jul 03 2019 CROSSREFS Cf. A001622, A002420, A002421, A002422, A002423, A004001, A007054, A007272. Sequence in context: A077960 A107971 A292314 * A101378 A107417 A056125 Adjacent sequences:  A002421 A002422 A002423 * A002425 A002426 A002427 KEYWORD sign,easy,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 12:38 EDT 2022. Contains 353746 sequences. (Running on oeis4.)