login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A020928 Expansion of 1/(1-4*x)^(17/2). 3
1, 34, 646, 9044, 104006, 1040060, 9360540, 77558760, 601080390, 4407922860, 30855460020, 207573094680, 1349225115420, 8510496881880, 52278766560120, 313672599360720, 1842826521244230, 10623352887172620 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

a(n) = binomial(n+8, 8)*A000984(n+8)/A000984(8), A000984: central binomial coefficients. - Wolfdieter Lang

a(n) = ((2*n+15)*(2*n+13)*(2*n+11)*(2*n+9)*(2*n+7)*(2*n+5)*(2*n+3)*(2*n+1)/2027025)*binomial(2*n, n). - Vincenzo Librandi, Jul 05 2013

Boas-Buck recurrence: a(n) = (34/n)*Sum_{k=0..n-1} 4^(n-k-1)*a(k), n >= 1, a(0) = 1. Proof from a(n) = A046521(n+8, 8). See a comment there. - Wolfdieter Lang, Aug 10 2017

MATHEMATICA

CoefficientList[Series[1/(1-4x)^(17/2), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 05 2013 *)

PROG

(MAGMA) [&*[2*n+i: i in [1..15 by 2]]*Binomial(2*n, n)/2027025: n in [0..20]]; // Vincenzo Librandi, Jul 05 2013

(PARI) vector(20, n, n--; m=n+8; binomial(2*m, m)*binomial(m, 8)/12870) \\ G. C. Greubel, Jul 21 2019

(Sage) [binomial(2*(n+8), n+8)*binomial(n+8, 8)/12870 for n in (0..20)] # G. C. Greubel, Jul 21 2019

(GAP) List([0..20], n-> Binomial(2*(n+8), n+8)*Binomial(n+8, 8)/12870); # G. C. Greubel, Jul 21 2019

CROSSREFS

  Cf. A000984, A020926, A046521 (ninth column).

Sequence in context: A264067 A004418 A322501 * A061689 A166217 A188711

Adjacent sequences:  A020925 A020926 A020927 * A020929 A020930 A020931

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 4 16:24 EDT 2020. Contains 335448 sequences. (Running on oeis4.)