login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020928
Expansion of 1/(1-4*x)^(17/2).
4
1, 34, 646, 9044, 104006, 1040060, 9360540, 77558760, 601080390, 4407922860, 30855460020, 207573094680, 1349225115420, 8510496881880, 52278766560120, 313672599360720, 1842826521244230, 10623352887172620, 60198999693978180, 335847050924299320, 1847158780083646260
OFFSET
0,2
LINKS
FORMULA
a(n) = binomial(n+8, 8)*A000984(n+8)/A000984(8), A000984: central binomial coefficients. - Wolfdieter Lang
a(n) = ((2*n+15)*(2*n+13)*(2*n+11)*(2*n+9)*(2*n+7)*(2*n+5)*(2*n+3)*(2*n+1)/2027025)*binomial(2*n, n). - Vincenzo Librandi, Jul 05 2013
Boas-Buck recurrence: a(n) = (34/n)*Sum_{k=0..n-1} 4^(n-k-1)*a(k), n >= 1, a(0) = 1. Proof from a(n) = A046521(n+8, 8). See a comment there. - Wolfdieter Lang, Aug 10 2017
From Amiram Eldar, Mar 27 2022: (Start)
Sum_{n>=0} 1/a(n) = 39708492/1001 - 7290*sqrt(3)*Pi.
Sum_{n>=0} (-1)^n/a(n) = 937500*sqrt(5)*log(phi) - 3029336260/3003, where phi is the golden ratio (A001622). (End)
MATHEMATICA
CoefficientList[Series[1/(1-4x)^(17/2), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 05 2013 *)
PROG
(Magma) [&*[2*n+i: i in [1..15 by 2]]*Binomial(2*n, n)/2027025: n in [0..20]]; // Vincenzo Librandi, Jul 05 2013
(PARI) vector(20, n, n--; m=n+8; binomial(2*m, m)*binomial(m, 8)/12870) \\ G. C. Greubel, Jul 21 2019
(Sage) [binomial(2*(n+8), n+8)*binomial(n+8, 8)/12870 for n in (0..20)] # G. C. Greubel, Jul 21 2019
(GAP) List([0..20], n-> Binomial(2*(n+8), n+8)*Binomial(n+8, 8)/12870); # G. C. Greubel, Jul 21 2019
CROSSREFS
Cf. A000984, A001622, A020926, A046521 (ninth column).
Sequence in context: A264067 A004418 A322501 * A061689 A166217 A188711
KEYWORD
nonn,easy
STATUS
approved