login
A016073
Undulating squares.
5
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 121, 484, 676, 69696
OFFSET
0,3
COMMENTS
Numbers with decimal expansion ababab... which are squares.
"Most mathematicians believe we will never find a larger one" - this has now been proved by David Moews.
REFERENCES
C. A. Pickover, "Keys to Infinity", Wiley 1995, pp. 159, 160.
C. A. Pickover, "Wonders of Numbers", Oxford New York 2001, Chapter 52, pp. 123-124, 316-317.
Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 68.
LINKS
D. Moews, Home Page [See the paper "No More Undulating Squares", available in LaTeX, DVI and Postscript]
C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review
Eric Weisstein's World of Mathematics, Undulating Number.
MAPLE
select(issqr, [$0..9, seq(seq(seq(a*(10^(d+1)-10^(d+1 mod 2))/99 + b*(10^d - 10^(d mod 2))/99, b=0..9), a=1..9), d=2..6)]); # Robert Israel, Jul 08 2016
MATHEMATICA
wave[1]=Range[0, 9]; wave[2]=Range[10, 99]; wave[n_] := wave[n] = Select[ Union[ Flatten[{id = IntegerDigits[#]; FromDigits[Prepend[id, id[[2]]]], FromDigits[Append[id, id[[-2]]]]} & /@ wave[n-1]]], 10^(n-1) < # < 10^n &]; A016073 = Reap[Do[Do[wk = wave[n][[k]]; If[IntegerQ[Sqrt[wk]], Sow[wk]], {k, 1, Length[wave[n]]}], {n, 1, 5}]][[2, 1]] (* Jean-François Alcover, Dec 28 2012 *)
CROSSREFS
Numbers in A033619 that are squares. See A122875 for the square roots.
Sequence in context: A018884 A050749 A096599 * A115743 A014186 A052062
KEYWORD
nonn,fini,full,nice,base
STATUS
approved