login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016070
Numbers k such that k^2 contains exactly 2 different digits, excluding 10^m, 2*10^m, 3*10^m.
5
4, 5, 6, 7, 8, 9, 11, 12, 15, 21, 22, 26, 38, 88, 109, 173, 212, 235, 264, 3114, 81619
OFFSET
1,1
COMMENTS
No other terms below 3.16*10^20 (derived from A018884).
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 109, p. 38, Ellipses, Paris 2008.
R. K. Guy, Unsolved Problems in Number Theory, F24.
LINKS
Michael Geißer, Theresa Körner, Sascha Kurz, and Anne Zahn, Squares with three digits, arXiv:2112.00444 [math.NT], 2021.
Eric Weisstein's World of Mathematics, Square Number.
FORMULA
A043537(a(n)) = 2. [Reinhard Zumkeller, Aug 05 2010]
MATHEMATICA
Select[Range[100000], Length[DeleteCases[DigitCount[#^2], 0]]==2 && !Divisible[ #, 10]&] (* Harvey P. Dale, Aug 15 2013 *)
Reap[For[n = 4, n < 10^5, n++, id = IntegerDigits[n^2]; If[FreeQ[id, {_, 0 ...}], If[Length[Union[id]] == 2, Sow[n]]]]][[2, 1]] (* Jean-François Alcover, Sep 30 2016 *)
PROG
(Python)
from gmpy2 import is_square, isqrt
from itertools import combinations, product
A016070_list = []
for g in range(2, 20):
....n = 2**g-1
....for x in combinations('0123456789', 2):
........if not x in [('0', '1'), ('0', '4'), ('0', '9')]:
............for i, y in enumerate(product(x, repeat=g)):
................if i > 0 and i < n and y[0] != '0':
....................z = int(''.join(y))
....................if is_square(z):
........................A016070_list.append(isqrt(z))
A016070_list = sorted(A016070_list) # Chai Wah Wu, Nov 03 2014
CROSSREFS
KEYWORD
nonn,nice,base,more,hard
STATUS
approved