The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A321025 a(n) = sum of a(n-4) and a(n-5), with the lowest possible initial values that will generate a sequence where a(n) is always > a(n-1): 4, 5, 6, 7 and 8. 0
 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 20, 24, 28, 32, 37, 44, 52, 60, 69, 81, 96, 112, 129, 150, 177, 208, 241, 279, 327, 385, 449, 520, 606, 712, 834, 969, 1126, 1318, 1546, 1803, 2095, 2444, 2864, 3349, 3898, 4539, 5308, 6213, 7247, 8437, 9847, 11521, 13460, 15684 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A sum of prior terms in the sequence, like the Fibonacci and Padovan sequences. LINKS Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,1). FORMULA a(n) = a(n-4) + a(n-5) with a(1) = 4, a(2) = 5, a(3) = 6, a(4) = 7 and a(5) = 8. G.f.: x*(4 + 5*x + 6*x^2 + 7*x^3 + 4*x^4)/(1 - x^4 - x^5). - Andrew Howroyd, Oct 31 2018 EXAMPLE a(6) = a(6-4) + a(6-5) = a(2) + a(1) = 5 + 4 = 9. MATHEMATICA Rest@ CoefficientList[Series[x (4 + 5 x + 6 x^2 + 7 x^3 + 4 x^4)/(1 - x^4 - x^5), {x, 0, 54}], x] (* Michael De Vlieger, Oct 31 2018 *) PROG (PARI) a(n) = if(n<=5, n+3, a(n-4) + a(n-5)); \\ Michel Marcus, Oct 31 2018 (PARI) Vec((4 + 5*x + 6*x^2 + 7*x^3 + 4*x^4)/(1 - x^4 - x^5) + O(x^50)) \\ Andrew Howroyd, Oct 31 2018 CROSSREFS Cf. A000045, A000931, A079398, A164317, A103372, A103373 Sequence in context: A120181 A016070 A299536 * A047569 A039062 A067187 Adjacent sequences:  A321022 A321023 A321024 * A321026 A321027 A321028 KEYWORD nonn,easy AUTHOR Mathew Munro, Oct 30 2018 EXTENSIONS a(19), a(20) corrected by Georg Fischer, May 24 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 16:45 EDT 2021. Contains 346486 sequences. (Running on oeis4.)