login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


A096599
Squares k^2 with property that A062892(k^2) = 1.
4
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 121, 225, 289, 324, 361, 484, 529, 576, 676, 729, 784, 841, 1156, 1225, 1444, 1521, 1681, 1849, 2116, 2209, 2601, 2704, 3025, 3136, 3249, 3364, 3481, 3721, 3844, 3969, 4225, 4356, 4489, 4624, 5041, 5184, 5329, 5476
OFFSET
1,3
LINKS
PROG
(Python)
from math import isqrt
from sympy.utilities.iterables import multiset_permutations as mp
def sqr(n): return isqrt(n)**2 == n
def ok(square):
s = str(square)
perms = (int("".join(p)) for p in mp(s, len(s)))
return len(set(p for p in perms if sqr(p))) == 1
def aupto(limit): return [k*k for k in range(isqrt(limit)+1) if ok(k*k)]
print(aupto(5476)) # Michael S. Branicky, Oct 18 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Jun 29 2004
EXTENSIONS
Definition clarified by N. J. A. Sloane, Jan 16 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 10:44 EDT 2024. Contains 376068 sequences. (Running on oeis4.)