login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015713
Numbers m such that phi(m) * sigma(m) + k^2 is not a square for any k.
2
4, 9, 18, 49, 81, 98, 121, 162, 242, 361, 529, 722, 729, 961, 1058, 1458, 1849, 1922, 2209, 2401, 3481, 3698, 4418, 4489, 4802, 5041, 6241, 6561, 6889, 6962, 8978, 10082, 10609, 11449, 12482, 13122, 13778, 14641, 16129, 17161
OFFSET
1,1
COMMENTS
Numbers m such that A062354(m) is in A016825. - Michel Marcus, Dec 07 2018
LINKS
Richard K. Guy, Divisors and desires, Amer. Math. Monthly, 104 (1997), 359-360.
FORMULA
Conjecture: {4, p^(2*m), 2*p^(2*m), p = 4*k+3 is prime}. - Sean A. Irvine, Dec 06 2018
The conjecture is true. It can be proved using the multiplicative property of A062354(n), i.e., A062354(p^e) = p^(e-1)*(p^(e+1)-1), and that if m is a term then A007814(A062354(m)) = 1. - Amiram Eldar, Feb 11 2024
MATHEMATICA
nonSqDiffQ[n_] := Mod[n, 4] == 2; aQ[n_] := nonSqDiffQ[ EulerPhi[n] * DivisorSigma[ 1, n]]; Select[Range[20000], aQ] (* Amiram Eldar, Dec 07 2018 *)
PROG
(PARI) isok(n) = (sigma(n)*eulerphi(n) % 4) == 2; \\ Michel Marcus, Dec 07 2018
CROSSREFS
Cf. A007814, A015710, A062354 (phi(n)*sigma(n)), A016825.
Sequence in context: A229072 A261983 A074896 * A049198 A146303 A344999
KEYWORD
nonn
STATUS
approved