|
|
A015715
|
|
Odd integers m such that phi(m) | sigma(m).
|
|
2
|
|
|
1, 3, 15, 35, 105, 357, 1045, 1485, 3135, 3339, 5049, 10659, 12441, 16065, 24871, 24969, 29029, 33915, 35343, 39105, 39585, 50065, 58435, 64285, 71145, 74613, 87087, 87685, 99693, 124355, 124605, 132957, 137885, 140335, 145145, 150195
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Subsequence of A236693. Proof: if n is in this sequence, then 2^phi(n) - 1 is divisible by n and 2^sigma(n) - 1 is divisible by 2^phi(n) - 1. Therefore, 2^sigma(n) == 1 (mod n) and n is in A236693. - Jinyuan Wang, Mar 13 2020
|
|
LINKS
|
Donovan Johnson, Table of n, a(n) for n = 1..1000
|
|
MATHEMATICA
|
Select[Range[1, 151001, 2], Divisible[DivisorSigma[1, #], EulerPhi[#]]&] (* Harvey P. Dale, Sep 16 2016 *)
|
|
PROG
|
(PARI) isok(m) = (m % 2) && !(sigma(m) % eulerphi(m)); \\ Michel Marcus, Mar 14 2020
|
|
CROSSREFS
|
Cf. A000010, A000203, A020492, A236693.
Sequence in context: A145949 A015809 A293995 * A187787 A290717 A019009
Adjacent sequences: A015712 A015713 A015714 * A015716 A015717 A015718
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Robert G. Wilson v
|
|
EXTENSIONS
|
Offset corrected by Donovan Johnson, Jan 18 2012
|
|
STATUS
|
approved
|
|
|
|