login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014753
Primes p==1 (mod 6) such that 3 and -3 are both cubes (one implies other) modulo p.
6
61, 67, 73, 103, 151, 193, 271, 307, 367, 439, 499, 523, 547, 577, 613, 619, 643, 661, 727, 757, 787, 853, 919, 967, 991, 997, 1009, 1021, 1093, 1117, 1249, 1303, 1321, 1399, 1531, 1543, 1549, 1597, 1609, 1621, 1669, 1759, 1783, 1861, 1867
OFFSET
1,1
COMMENTS
Primes of the form x^2+xy+61y^2, whose discriminant is -243. - T. D. Noe, May 17 2005
Primes of the form (x^2 + 243*y^2)/4. - Arkadiusz Wesolowski, May 30 2015
REFERENCES
K. Ireland and M. Rosen, A classical introduction to modern number theory, Vol. 84, Graduate Texts in Mathematics, Springer-Verlag. Exercise 23, p. 135.
LINKS
MATHEMATICA
p6 = Select[6*Range[0, 400]+1, PrimeQ]; Select[p6, (Reduce[3 == k^3+m*#, {k, m}, Integers] =!= False)&] (* Jean-François Alcover, Feb 20 2014 *)
PROG
(PARI) forprime(p=1, 9999, p%6==1&&ispower(Mod(3, p), 3)&&print1(p", ")) \\ M. F. Hasler, Feb 18 2014
(PARI) is_A014753(p)={p%6==1&&ispower(Mod(3, p), 3)&&isprime(p)} \\ M. F. Hasler, Feb 18 2014
CROSSREFS
Sequence in context: A295157 A095575 A095563 * A349461 A316933 A255225
KEYWORD
nonn,easy
EXTENSIONS
Offset changed from 0 to 1 by Bruno Berselli, Feb 20 2014
STATUS
approved