|
|
A014755
|
|
3 and -3 are both 4th powers (one implies other) mod these primes p=1 mod 8.
|
|
3
|
|
|
193, 313, 433, 577, 601, 673, 769, 937, 1201, 1297, 1321, 1657, 1801, 1993, 2137, 2473, 2521, 2593, 2833, 2953, 3169, 3529, 3673, 3697, 3769, 3889, 4057, 4129, 4153, 4297, 4441, 4513, 4561, 4801, 4969, 5113, 5209, 5233, 5281, 5449, 5521
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
MAPLE
|
filter:= proc(p) isprime(p) and [msolve(x^4=3, p)] <> [] end proc:
select(filter, [seq(i, i=1..10^4, 8)]); # Robert Israel, May 07 2019
|
|
MATHEMATICA
|
okQ[p_] := PrimeQ[p] && Solve[x^4 == 3, x, Modulus -> p] != {};
|
|
PROG
|
(PARI) forprime(p=1, 9999, p%8==1&&ispower(Mod(3, p), 4)&&print1(p", ")) \\ M. F. Hasler, Feb 18 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|