login
A014755
3 and -3 are both 4th powers (one implies other) mod these primes p=1 mod 8.
3
193, 313, 433, 577, 601, 673, 769, 937, 1201, 1297, 1321, 1657, 1801, 1993, 2137, 2473, 2521, 2593, 2833, 2953, 3169, 3529, 3673, 3697, 3769, 3889, 4057, 4129, 4153, 4297, 4441, 4513, 4561, 4801, 4969, 5113, 5209, 5233, 5281, 5449, 5521
OFFSET
1,1
LINKS
MAPLE
filter:= proc(p) isprime(p) and [msolve(x^4=3, p)] <> [] end proc:
select(filter, [seq(i, i=1..10^4, 8)]); # Robert Israel, May 07 2019
MATHEMATICA
okQ[p_] := PrimeQ[p] && Solve[x^4 == 3, x, Modulus -> p] != {};
Select[Range[1, 10000, 8], okQ] (* Jean-François Alcover, Feb 08 2023 *)
PROG
(PARI) forprime(p=1, 9999, p%8==1&&ispower(Mod(3, p), 4)&&print1(p", ")) \\ M. F. Hasler, Feb 18 2014
(PARI) is_A014755(p)={p%8==1&&ispower(Mod(3, p), 4)&&isprime(p)} \\ M. F. Hasler, Feb 18 2014
(Python)
from itertools import count, islice
from sympy import nextprime, is_nthpow_residue
def A014755_gen(startvalue=2): # generator of terms >= startvalue
p = max(nextprime(startvalue-1), 2)
while True:
if p&7==1 and is_nthpow_residue(3, 4, p) and is_nthpow_residue(-3, 4, p):
yield p
p = nextprime(p)
A014755_list = list(islice(A014755_gen(), 20)) # Chai Wah Wu, May 02 2024
CROSSREFS
Cf. A007519.
Sequence in context: A015988 A260539 A142743 * A238667 A216451 A139506
KEYWORD
nonn
EXTENSIONS
Offset changed from 0 to 1 by Bruno Berselli, Feb 20 2014
STATUS
approved