login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007988
Expansion of (x^6-x^5-x^4+2x^2)/((1-x^3)(1-x^2)^2(1-x)).
1
2, 2, 5, 6, 11, 12, 20, 22, 32, 36, 49, 54, 71, 78, 98, 108, 132, 144, 173, 188, 221, 240, 278, 300, 344, 370, 419, 450, 505, 540, 602, 642, 710, 756, 831, 882, 965, 1022, 1112, 1176, 1274, 1344, 1451, 1528, 1643, 1728, 1852, 1944, 2078, 2178
OFFSET
2,1
COMMENTS
Poincaré series [or Poincare series] of Lie algebra associated with a certain braid group.
LINKS
S. P. Humphries, Home page
S. P. Humphries, Braid groups, infinite Lie algebras of Cartan type and rings of invariants, Topology and its Applications, 95 (3) (1999) pp. 173-205.
FORMULA
a(n) = -25/72+A000217(n+1)/12+A000292(n+1)/12+17*(n+1)/144+3*(n+1)*(-1)^n/16-2*A049347(n+2)/9-(-1)^n/8. [R. J. Mathar, Apr 23 2009]
a(2)=2, a(3)=2, a(4)=5, a(5)=6, a(6)=11, a(7)=12, a(8)=20, a(9)=22; for n>9, a(n) = a(n-1)+ 2*a(n-2)-a(n-3)-2*a(n-4)-a(n-5)+2*a(n-6)+a(n-7)-a(n-8). - Harvey P. Dale, Apr 04 2013
a(n) = floor((n+1)*(27*(-1)^n+41+16*n+2*n^2)/144). - Tani Akinari, Jun 26 2013
MAPLE
A007988:=n->floor((n+1)*(27*(-1)^n+41+16*n+2*n^2)/144); seq(A007988(n), n=2..100); # Wesley Ivan Hurt, Feb 26 2014
MATHEMATICA
Drop[CoefficientList[Series[(x^6-x^5-x^4+2x^2)/((1-x^3)(1-x^2)^2(1-x)), {x, 0, 60}], x], 2] (* or *) LinearRecurrence[{1, 2, -1, -2, -1, 2, 1, -1}, {2, 2, 5, 6, 11, 12, 20, 22}, 60] (* Harvey P. Dale, Apr 04 2013 *)
PROG
(Magma) [Floor((n+1)*(27*(-1)^n+41+16*n+2*n^2)/144): n in [2..60]]; // Vincenzo Librandi, Mar 04 2014
CROSSREFS
Sequence in context: A240059 A288766 A348324 * A241449 A240184 A317853
KEYWORD
nonn
EXTENSIONS
More terms from Ralf Stephan, Jun 11 2005
STATUS
approved