login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007988 Expansion of (x^6-x^5-x^4+2x^2)/((1-x^3)(1-x^2)^2(1-x)). 1
2, 2, 5, 6, 11, 12, 20, 22, 32, 36, 49, 54, 71, 78, 98, 108, 132, 144, 173, 188, 221, 240, 278, 300, 344, 370, 419, 450, 505, 540, 602, 642, 710, 756, 831, 882, 965, 1022, 1112, 1176, 1274, 1344, 1451, 1528, 1643, 1728, 1852, 1944, 2078, 2178 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,1
COMMENTS
Poincaré series [or Poincare series] of Lie algebra associated with a certain braid group.
LINKS
S. P. Humphries, Home page
S. P. Humphries, Braid groups, infinite Lie algebras of Cartan type and rings of invariants, Topology and its Applications, 95 (3) (1999) pp. 173-205.
FORMULA
a(n) = -25/72+A000217(n+1)/12+A000292(n+1)/12+17*(n+1)/144+3*(n+1)*(-1)^n/16-2*A049347(n+2)/9-(-1)^n/8. [R. J. Mathar, Apr 23 2009]
a(2)=2, a(3)=2, a(4)=5, a(5)=6, a(6)=11, a(7)=12, a(8)=20, a(9)=22; for n>9, a(n) = a(n-1)+ 2*a(n-2)-a(n-3)-2*a(n-4)-a(n-5)+2*a(n-6)+a(n-7)-a(n-8). - Harvey P. Dale, Apr 04 2013
a(n) = floor((n+1)*(27*(-1)^n+41+16*n+2*n^2)/144). - Tani Akinari, Jun 26 2013
MAPLE
A007988:=n->floor((n+1)*(27*(-1)^n+41+16*n+2*n^2)/144); seq(A007988(n), n=2..100); # Wesley Ivan Hurt, Feb 26 2014
MATHEMATICA
Drop[CoefficientList[Series[(x^6-x^5-x^4+2x^2)/((1-x^3)(1-x^2)^2(1-x)), {x, 0, 60}], x], 2] (* or *) LinearRecurrence[{1, 2, -1, -2, -1, 2, 1, -1}, {2, 2, 5, 6, 11, 12, 20, 22}, 60] (* Harvey P. Dale, Apr 04 2013 *)
PROG
(Magma) [Floor((n+1)*(27*(-1)^n+41+16*n+2*n^2)/144): n in [2..60]]; // Vincenzo Librandi, Mar 04 2014
CROSSREFS
Sequence in context: A240059 A288766 A348324 * A241449 A240184 A317853
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Ralf Stephan, Jun 11 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 8 14:02 EDT 2023. Contains 363165 sequences. (Running on oeis4.)