login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007987
Number of irreducible words of length 2n in the free group with generators x,y such that the total degree of x and the total degree of y both equal zero.
2
1, 0, 8, 40, 312, 2240, 17280, 134568, 1071000, 8627872, 70302888, 577920200, 4786740112, 39899052960, 334391846048, 2815803070920, 23809393390680, 202061204197632, 1720404406215720, 14690717541313128, 125775000062934552
OFFSET
0,3
COMMENTS
Also, co-growth function of a certain group given by Humphries 1997 (page 211).
LINKS
Stephen P Humphries, Cogrowth of groups and the Dedekind-Frobenius group determinant, Mathematical Proc. Camb. Phil. Soc. (1997) vol. 121, pp. 193-217
FORMULA
For n>0, a(n) = A168597(n) - A168597(n-1) = A002426(n)^2 - A002426(n-1)^2.
G.f.: (1-x)*hypergeom([1/12, 5/12],[1],1728*x^4*(x-1)*(9*x-1)*(3*x+1)^2/(81*x^4-36*x^3-26*x^2-4*x+1)^3)/(81*x^4-36*x^3-26*x^2-4*x+1)^(1/4). - Mark van Hoeij, Apr 10 2014
MATHEMATICA
CoefficientList[Series[(1 - x)*Hypergeometric2F1[1/12, 5/12, 1,
1728*x^4*(x - 1)*(9*x - 1)*(3*x + 1)^2/(81*x^4 - 36*x^3 - 26*x^2 - 4*x + 1)^3]/(81*x^4 - 36*x^3 - 26*x^2 - 4*x + 1)^(1/4), {x, 0, 50}], x] (* G. C. Greubel, Mar 07 2017 *)
CROSSREFS
Sequence in context: A188332 A158922 A117083 * A343868 A350125 A096969
KEYWORD
nonn
EXTENSIONS
Formula and further terms from Max Alekseyev, Jun 04 2011
STATUS
approved