Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Sep 08 2022 08:44:35
%S 2,2,5,6,11,12,20,22,32,36,49,54,71,78,98,108,132,144,173,188,221,240,
%T 278,300,344,370,419,450,505,540,602,642,710,756,831,882,965,1022,
%U 1112,1176,1274,1344,1451,1528,1643,1728,1852,1944,2078,2178
%N Expansion of (x^6-x^5-x^4+2x^2)/((1-x^3)(1-x^2)^2(1-x)).
%C Poincaré series [or Poincare series] of Lie algebra associated with a certain braid group.
%H Vincenzo Librandi, <a href="/A007988/b007988.txt">Table of n, a(n) for n = 2..1000</a>
%H S. P. Humphries, <a href="http://www.math.byu.edu/~steve/">Home page</a>
%H S. P. Humphries, <a href="http://dx.doi.org/10.1016/S0166-8641(98)00007-8">Braid groups, infinite Lie algebras of Cartan type and rings of invariants</a>, Topology and its Applications, 95 (3) (1999) pp. 173-205.
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (1, 2, -1, -2, -1, 2, 1, -1).
%F a(n) = -25/72+A000217(n+1)/12+A000292(n+1)/12+17*(n+1)/144+3*(n+1)*(-1)^n/16-2*A049347(n+2)/9-(-1)^n/8. [_R. J. Mathar_, Apr 23 2009]
%F a(2)=2, a(3)=2, a(4)=5, a(5)=6, a(6)=11, a(7)=12, a(8)=20, a(9)=22; for n>9, a(n) = a(n-1)+ 2*a(n-2)-a(n-3)-2*a(n-4)-a(n-5)+2*a(n-6)+a(n-7)-a(n-8). - _Harvey P. Dale_, Apr 04 2013
%F a(n) = floor((n+1)*(27*(-1)^n+41+16*n+2*n^2)/144). - _Tani Akinari_, Jun 26 2013
%p A007988:=n->floor((n+1)*(27*(-1)^n+41+16*n+2*n^2)/144); seq(A007988(n), n=2..100); # _Wesley Ivan Hurt_, Feb 26 2014
%t Drop[CoefficientList[Series[(x^6-x^5-x^4+2x^2)/((1-x^3)(1-x^2)^2(1-x)),{x,0,60}],x],2] (* or *) LinearRecurrence[{1,2,-1,-2,-1,2,1,-1},{2,2,5,6,11,12,20,22},60] (* _Harvey P. Dale_, Apr 04 2013 *)
%o (Magma) [Floor((n+1)*(27*(-1)^n+41+16*n+2*n^2)/144): n in [2..60]]; // _Vincenzo Librandi_, Mar 04 2014
%K nonn
%O 2,1
%A _Stephen P. Humphries_
%E More terms from _Ralf Stephan_, Jun 11 2005