login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240059 Number of partitions of n such that m(1) > m(3), where m = multiplicity. 2
0, 1, 1, 2, 2, 5, 6, 10, 12, 20, 25, 37, 46, 67, 84, 116, 145, 197, 246, 325, 404, 527, 653, 837, 1032, 1310, 1609, 2018, 2467, 3070, 3738, 4612, 5591, 6854, 8277, 10080, 12125, 14688, 17604, 21212, 25333, 30389, 36172, 43201, 51256, 60981, 72132, 85498 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..47.

FORMULA

a(n) + A182714(n) + A240058(n) = A000041(n) for n >= 0.

EXAMPLE

a(6) counts these 6 partitions:  51, 411, 3111, 2211, 21111, 111111.

MATHEMATICA

z = 60; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Count[p, 1] < Count[p, 3]], {n, 0, z}]  (* A182714 *)

t2 = Table[Count[f[n], p_ /; Count[p, 1] <= Count[p, 3]], {n, 0, z}] (* A182714(n+3) *)

t3 = Table[Count[f[n], p_ /; Count[p, 1] == Count[p, 3]], {n, 0, z}] (* A240058 *)

t4 = Table[Count[f[n], p_ /; Count[p, 1] > Count[p, 3]], {n, 0, z}]  (* A240059 *)

t5 = Table[Count[f[n], p_ /; Count[p, 1] >= Count[p, 3]], {n, 0, z}] (* A240059(n+1) *)

CROSSREFS

Cf. A182714, A240058, A000041.

Sequence in context: A098507 A097066 A035548 * A288766 A007988 A241449

Adjacent sequences:  A240056 A240057 A240058 * A240060 A240061 A240062

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Mar 31 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 13:59 EST 2017. Contains 294972 sequences.